


1.	 Preface

a.	 Why	I	Wrote	This	Book

b.	 Who	This	Book	Is	For

c.	 How	This	Book	Is	Organized

d.	 Conventions	Used	in	This	Book

e.	 Using	Code	Examples

f.	 O’Reilly	Online	Learning

g.	 How	to	Contact	Us

h.	 Acknowledgments

2.	 1.	Full	Stack	Development	in	the	Era	of	Serverless	Computing

a.	 Modern	Serverless	Philosophy

i.	 Characteristics	of	a	Serverless	Application

ii.	 Benefits	of	a	Serverless	Architecture

iii.	 Different	Implementations	of	Serverless

b.	 Introduction	to	AWS

i.	 About	AWS

ii.	 Full	Stack	Serverless	on	AWS

iii.	 Amplify	CLI

c.	 Introduction	to	the	AWS	Amplify	CLI

i.	 Installing	and	Configuring	the	Amplify	CLI

ii.	 Initializing	Your	First	Amplify	Project

iii.	 Creating	and	Deploying	Your	First	Service



iv.	 Deleting	the	Resources

d.	 Summary

3.	 2.	Getting	Started	with	AWS	Amplify

a.	 Creating	and	Deploying	a	Serverless	Function

i.	 Creating	the	React	Application	and	Installing
the	Dependencies

ii.	 Creating	a	New	Serverless	Function	with	the
Amplify	CLI

iii.	 Walking	Through	the	Code

iv.	 Creating	the	/coins	Route

b.	 Adding	the	API

i.	 Creating	a	New	API

ii.	 Deploying	the	API	and	the	Lambda	Function

c.	 Interacting	with	the	New	API

i.	 Configuring	the	Client	App	to	Work	with
Amplify

ii.	 The	Amplify	Client	API	Category

iii.	 Calling	the	API	and	Rendering	the	Data	in
React

d.	 Updating	the	Function	to	Call	Another	API

i.	 Installing	Axios

ii.	 Updating	the	Function

iii.	 Updating	the	Client	App

e.	 Summary



4.	 3.	Creating	Your	First	App

a.	 Introduction	to	GraphQL

i.	 What	Is	GraphQL?

ii.	 What	Makes	Up	a	GraphQL	API?

iii.	 GraphQL	Operations

b.	 Creating	the	GraphQL	API

c.	 Viewing	and	Interacting	with	the	GraphQL	API

d.	 Building	the	React	Application

i.	 Listing	Notes	(GraphQL	Query)

ii.	 Creating	Notes	(GraphQL	Mutation)

iii.	 Deleting	Notes	(GraphQL	Mutation)

iv.	 Updating	Notes	(GraphQL	Mutation)

v.	 Real-Time	Data	(GraphQL	Subscriptions)

e.	 Summary

5.	 4.	Introduction	to	Authentication

a.	 Introduction	to	Amazon	Cognito

i.	 How	Amazon	Cognito	Works

ii.	 Amazon	Cognito	Integration	with	AWS
Amplify

b.	 Creating	the	React	App	and	Adding	Amplify

i.	 Client	Authentication	Overview

c.	 Building	the	App

i.	 Creating	the	File	and	Folder	Structure



ii.	 Creating	the	First	Component

iii.	 Public	Component

iv.	 Nav	Component

v.	 Protected	Component

vi.	 Router	Component

vii.	 Profile	Component

viii.	 Styling	the	UI	Components

ix.	 Configuring	the	App

x.	 Testing	the	App

d.	 Summary

6.	 5.	Custom	Authentication	Strategies

a.	 Creating	the	protectedRoute	Hook

b.	 Creating	the	Form

i.	 SignIn	Component

ii.	 SignUp	Component

iii.	 ConfirmSignUp	Component

iv.	 ForgotPassword	Component

v.	 ForgotPasswordSubmit	Component

vi.	 Completing	Form.js

vii.	 updateForm	Helper	Function

viii.	 renderForm	Function

ix.	 Form	Type	Toggles

x.	 Updating	the	Profile	Component



xi.	 Testing	the	App

c.	 Summary

7.	 6.	Serverless	Functions	In-Depth:	Part	1

a.	 Event	Sources	and	Data	Structure

i.	 API	Gateway	Event

ii.	 Amazon	S3	Event

iii.	 Amazon	Cognito	Event

b.	 IAM	Permissions	and	Trigger	Configuration

c.	 Creating	the	Base	Project

d.	 Adding	a	Post-Confirmation	Lambda	Trigger

e.	 Dynamic	Image	Resizing	with	AWS	Lambda	and
Amazon	S3

i.	 Adding	the	Custom	Logic	for	Resizing	the
Image

ii.	 Uploading	Images	from	the	React	Application

f.	 Summary

8.	 7.	Serverless	Functions	In-Depth:	Part	2

a.	 What	We’ll	Build

b.	 Getting	Started

c.	 Adding	Authentication	and	Group	Privileges

d.	 Adding	the	Database

e.	 Adding	the	API

f.	 Creating	the	Frontend

i.	 Container	Component



ii.	 checkUser	Function

iii.	 Nav	Component

iv.	 Profile	Component

v.	 Router	Component

vi.	 Admin	Component

vii.	 Main	Component

g.	 Testing	It	Out

h.	 Summary

9.	 8.	AWS	AppSync	In-Depth

a.	 Building	Skills	for	GraphQL,	AppSync	API,	and	React
Router

i.	 Relationships	Between	GraphQL	Types

ii.	 Multiple	Authentication	Types

iii.	 Authorization

iv.	 Custom	Data	Access	Patterns	Using	GSIs

b.	 Starting	to	Build	the	App

c.	 Creating	the	Amplify	App	and	Adding	the	Features

d.	 Building	the	Backend

i.	 Authentication

ii.	 The	AppSync	API

e.	 Deploying	the	Services

f.	 Building	the	Frontend

i.	 Container



ii.	 Footer

iii.	 Nav

iv.	 Admin

v.	 Router

vi.	 Performance

vii.	 Home

g.	 Summary

10.	 9.	Building	Offline	Apps	with	Amplify	DataStore

a.	 About	Amplify	DataStore

i.	 Amplify	DataStore	Overview

ii.	 Amplify	DataStore	Operations

iii.	 DataStore	Predicates

b.	 Building	an	Offline	and	Real-Time	App	with	Amplify
DataStore

i.	 Creating	the	Base	Project

ii.	 Creating	the	API

iii.	 Writing	the	Client-Side	Code

iv.	 Testing	the	Offline	Functionality

v.	 Testing	the	Real-Time	Functionality

c.	 Summary

11.	 10.	Working	with	Images	and	Storage

a.	 Using	Amazon	S3

i.	 Creating	the	Base	Project



ii.	 Adding	Authentication

iii.	 Creating	the	API

iv.	 Writing	the	Client-Side	Code

b.	 Summary

12.	 11.	Hosting:	Deploying	Your	Application	to	the	Amplify	Console
with	CI	and	CD

a.	 CLI-Based	Deployments

b.	 Git-Based	Deployments

i.	 Creating	the	GitHub	Repository

ii.	 Git-Based	CI/CD

c.	 Access	Control

d.	 Custom	Domains

e.	 Summary

13.	 Index



Praise	for	Full	Stack	Serverless

“Nader	does	a	great	job	both	making	the	case	for	serverless
technologies	and	walking	you	through	real-world	scenarios.	After
reading	this	book	and	implementing	the	many	sample	projects,	you	will
definitely	have	the	skills	you	need	to	take	advantage	of	serverless
technologies	and	build	better	apps	faster	than	ever.”

—Brice	Wilson,	Trainer	and	Consultant

“Developing	a	full	stack	application	doesn’t	have	to	be	daunting.	This
book	provides	an	easy,	efficient,	and	effective	way	to	get	your
application	ready	and	available	to	your	users.”

—Femi	Oladeji,	Frontend	Developer,	Temper

“Full	Stack	Serverless	will	get	you	started	with	GraphQL,	AppSync,
and	cloud	development	in	no	time,	handling	most	of	the	complexity	for
you	so	you	can	focus	on	creating	your	app.	Thumbs	up!”

—Oliver	Kiessler,	Full	Stack	Developer

“Nader	is	bringing	serverless	web	development	to	the	masses.	Full
Stack	Serverless	is	a	can’t-miss	book	for	any	web	developer	interested
in	using	AWS	Lambda,	Cognito,	and	AppSync	to	improve	their	work.”

—Adam	Rackis,	Software	Engineer,	Riot	Games



Full	Stack	Serverless
Modern	Application	Development	with	React,	AWS,

and	GraphQL

Nader	Dabit



Full	Stack	Serverless

by	Nader	Dabit

Copyright	©	2020	Nader	Dabit.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales
promotional	use.	Online	editions	are	also	available	for	most	titles
(http://oreilly.com).	For	more	information,	contact	our
corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Acquisitions	Editor:	Jennifer	Pollock

Development	Editor:	Angela	Rufino

Production	Editor:	Deborah	Baker

Copyeditor:	Piper	Editing,	LLC

Proofreader:	Holly	Bauer	Forsyth

Indexer:	Potomac	Indexing,	LLC

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

http://oreilly.com


Illustrator:	Rebecca	Demarest

July	2020:	First	Edition

Revision	History	for	the	First	Edition

2020-07-13:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781492059899	for	release
details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Full
Stack	Serverless,	the	cover	image,	and	related	trade	dress	are	trademarks
of	O’Reilly	Media,	Inc.

The	views	expressed	in	this	work	are	those	of	the	author,	and	do	not
represent	the	publisher’s	views.	While	the	publisher	and	the	author	have
used	good	faith	efforts	to	ensure	that	the	information	and	instructions
contained	in	this	work	are	accurate,	the	publisher	and	the	author	disclaim
all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this
work.	Use	of	the	information	and	instructions	contained	in	this	work	is	at
your	own	risk.	If	any	code	samples	or	other	technology	this	work	contains
or	describes	is	subject	to	open	source	licenses	or	the	intellectual	property
rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-492-05989-9

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492059899


Preface

Why	I	Wrote	This	Book
When	I	first	learned	how	to	code	I	had	no	idea	how	broad	of	a	spectrum
software	development	was.	All	I	wanted	to	do	was	to	build	an	app.	Oh
boy,	I	learned	how	naive	I	was	at	that	time	once	I	started	digging	into	and
piecing	together	all	of	the	things	that	it	took	to	accomplish	what	I	wanted
to	do.

One	of	the	main	things	I	learned	was	that	applications	typically	consisted
of	two	main	parts:	frontend	(or	client-side	code)	and	backend	APIs	and
services.	At	the	time,	cloud	technologies	were	in	their	infancy	and
learning	how	to	build	full	stack	applications	was	overwhelming	to	say	the
least!	This	was	made	even	harder	because	I	wanted	to	build	native	mobile
apps,	and	I	learned	that	building	mobile	apps	was	much	tougher	to	get
started	with	than	building	web	applications.

Fast-forward	almost	10	years	and	the	landscape	is	starting	to	look	much
different.	Things	that	once	took	a	large	team	of	developers	to	do	can	now
sometimes	be	accomplished	by	a	single	developer.	Tools	like	React
Native,	Flutter,	and	Cordova	allow	developers	to	build	and	ship	cross-
platform	mobile	applications	using	a	single	codebase.	Cloud	technologies
like	AWS	Amplify,	Firebase,	and	others	allow	the	same	developers	to	also
leverage	the	cloud	to	build	out	the	backends	much	more	rapidly	than	ever
before.

I	think	we	are	coming	into	a	new	paradigm	where	it	is	easier	than	ever	to



become	a	full	stack	developer	and	the	definition	of	what	a	full	stack
developer	is	is	starting	to	change.	I	wrote	this	book	to	lay	out	my	vision	of
what	this	new	paradigm	looks	like	in	practice	and	to	showcase	a
technology	that	has	been	created	specifically	to	take	advantage	of	the	most
cutting-edge	frontend	and	cloud	technologies.	What	I	am	describing	in	this
book	is,	in	my	opinion,	the	future	of	software	engineering.



Who	This	Book	Is	For
This	book	is	for	any	software	engineer	looking	to	build	full	stack
applications,	especially	those	interested	in	cloud	computing.	It	is	also
aimed	at	frontend	developers	looking	to	learn	how	to	use	their	existing
skill	set	to	build	full	stack	applications	using	cloud	technologies.

It	is	also	a	good	resource	for	CTOs	and	startup	founders	looking	to
maximize	efficiency	and	move	with	the	most	developer	velocity	possible
while	using	the	fewest	resources.	The	techniques	outlined	in	this	book	are
ideal	for	rapid	prototyping	and	fast	experimentation,	allowing	developers
and	founders	to	get	their	idea	to	market	quickly	and	have	a	product	that	is
also	scalable	and	durable	should	it	succeed.



How	This	Book	Is	Organized
The	goal	of	this	book	is	to	introduce	you	to	all	of	the	pieces	needed	to
build	a	real-world	and	scalable	full	stack	application	using	React	and
serverless	technologies.	It	gradually	introduces	features	(like
authentication,	APIs,	and	databases)	and	some	techniques	to	implement
these	features,	both	on	the	frontend	and	backend,	by	building	out	different
applications	in	each	chapter.

Each	application	you	create	will	build	upon	knowledge	learned	in	the
previous	chapter.	In	the	last	chapter,	you	will	build	out	a	sophisticated
application	utilizing	many	of	the	cloud	services	needed	to	build	real-world
applications	in	your	job	or	startup.	When	you	have	finished	working
through	this	book,	you	should	have	the	knowledge	and	understanding
needed	to	apply	what	you	have	learned	to	build	serverless	applications	on
your	own	using	React	and	AWS	cloud	technologies.

Chapter	1,	Full	Stack	Development	in	the	Era	of	Serverless	Computing

In	this	chapter,	I’ll	describe	serverless	philosophy,	the	characteristics
and	benefits	of	serverless	applications,	and	introduce	you	to	AWS	and
AWS	Amplify	CLI.

Chapter	2,	Getting	Started	with	AWS	Amplify

In	this	chapter,	we	will	get	going	using	AWS	Amplify	to	create	and
deploy	a	serverless	function.	We’ll	create	the	function,	then	add	the
API	and	interact	with	it.

Chapter	3,	Creating	Your	First	App

Here,	we’ll	cover	the	basic	process	of	creating	a	new	full	stack



application	from	scratch	by	building	a	notes	app.	We	will	create	a	new
React	application,	initialize	a	new	Amplify	project,	add	a	GraphQL
API,	and	then	connect	to	and	interact	with	the	API	from	the	client
(React)	application.

Chapter	4,	Introduction	to	Authentication

In	this	chapter,	we	will	walk	through	the	process	of	adding
authentication	to	an	application.	We	will	start	by	creating	a	new	React
application	and	adding	basic	authentication	using	the
withAuthenticator	higher-order	component	(HOC)	from	the
AWS	Amplify	React	library.	We’ll	read	the	user’s	metadata	and	create
a	profile	screen	that	will	allow	the	user	to	see	their	information.

Chapter	5,	Custom	Authentication	Strategies

In	this	chapter,	we’ll	look	closer	at	authentication	by	creating	a	custom
authentication	flow	with	React,	React	Router,	and	AWS	Amplify.	The
app	will	have	a	sign-up	screen,	a	sign-in	screen,	and	a	forgotten-
password	screen.	Once	logged	in,	there	will	be	a	main	menu	that	will
allow	them	to	navigate	to	their	profile	page,	a	map	page,	and	a
welcome	screen	that	will	serve	as	the	main	view	of	the	app.

Chapter	6,	Serverless	Functions	In-Depth:	Part	1	and	Chapter	7,
Serverless	Functions	In-Depth:	Part	2

Here,	we’ll	introduce	serverless	functions	and	how	to	interact	with
them	in	a	React	application.	We’ll	walk	through	how	to	create,	update,
and	delete	serverless	functions	by	creating	an	app	that	fetches	shiba
inu	pictures	from	a	CORS-protected	API	with	our	code	living	in	an
AWS	Lambda	function	that	we	will	create	and	configure	using	the
AWS	Amplify	CLI.

Chapter	8,	AWS	AppSync	In-Depth

In	this	chapter,	we’ll	build	upon	what	we	learned	in	Chapter	3	by
building	a	more	complex	API	that	includes	many-to-many
relationships	and	multiple	authorization	types.	We’ll	build	an	event



application	that	allows	admins	to	create	stages	and	performances.
We’ll	enable	all	users	to	be	able	to	read	event	information	regardless
whether	they	are	signed	in,	but	we’ll	only	allow	admin	users	who	are
signed	in	to	create,	update,	or	delete	events	and	stages.

Chapter	9,	Building	Offline	Apps	with	Amplify	DataStore

In	this	chapter,	we’ll	cover	how	to	add	offline	functionality	using
Amplify	DataStore.

Chapter	10,	Working	with	Images	and	Storage

Here,	we’ll	learn	how	to	create	a	photo-sharing	app	that	will	allow
users	to	upload	and	view	images.

Chapter	11,	Hosting:	Deploying	Your	Application	to	the	Amplify	Console
with	CI	and	CD

In	this	final	chapter,	we’ll	take	the	photo-sharing	app	we	created	in
Chapter	10	and	deploy	it	to	a	live	domain	using	the	Amplify	Console.
We’ll	learn	how	to	add	continuous	integration	(CI)	and	continuous
deployment	(CD)	by	kicking	off	new	builds	when	updates	are	merged
to	the	master	branch.	Finally,	we’ll	learn	how	to	add	a	custom	domain
so	your	app	will	be	live	on	a	real	URL	that	you	own.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file
extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to
program	elements	such	as	variable	or	function	names,	databases,	data



types,	environment	variables,	statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the
user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by
values	determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for
download	at	https://github.com/dabit3/full-stack-serverless-code.

If	you	have	a	technical	question	or	a	problem	using	the	code	examples,
please	send	email	to	bookquestions@oreilly.com.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example
code	is	offered	with	this	book,	you	may	use	it	in	your	programs	and
documentation.	You	do	not	need	to	contact	us	for	permission	unless	you’re
reproducing	a	significant	portion	of	the	code.	For	example,	writing	a

https://github.com/dabit3/full-stack-serverless-code
mailto:bookquestions@oreilly.com


program	that	uses	several	chunks	of	code	from	this	book	does	not	require
permission.	Selling	or	distributing	examples	from	O’Reilly	books	does
require	permission.	Answering	a	question	by	citing	this	book	and	quoting
example	code	does	not	require	permission.	Incorporating	a	significant
amount	of	example	code	from	this	book	into	your	product’s
documentation	does	require	permission.

We	appreciate,	but	generally	do	not	require,	attribution.	An	attribution
usually	includes	the	title,	author,	publisher,	and	ISBN.	For	example:	“Full
Stack	Serverless	by	Nader	Dabit	(O’Reilly).	Copyright	2020	Nader	Dabit,
978-1-492-05989-9.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the
permission	given	above,	feel	free	to	contact	us	at
permissions@oreilly.com.

O’Reilly	Online	Learning

NOTE
For	more	than	40	years,	O’Reilly	Media	has	provided	technology	and	business
training,	knowledge,	and	insight	to	help	companies	succeed.

Our	unique	network	of	experts	and	innovators	share	their	knowledge	and
expertise	through	books,	articles,	and	our	online	learning	platform.
O’Reilly’s	online	learning	platform	gives	you	on-demand	access	to	live
training	courses,	in-depth	learning	paths,	interactive	coding	environments,
and	a	vast	collection	of	text	and	video	from	O’Reilly	and	200+	other
publishers.	For	more	information,	visit	http://oreilly.com.

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com


How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the
publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at
https://oreil.ly/Full_Stack_Serverless.

Email	bookquestions@oreilly.com	to	comment	or	ask	technical	questions
about	this	book.

For	news	and	information	about	our	books	and	courses,	visit
http://oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

https://oreil.ly/Full_Stack_Serverless
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


Acknowledgments
Thank	you	to	my	wife,	Lilly,	who	has	steadfastly	supported	me	through
my	career	and	has	gone	above	and	beyond	to	keep	our	life	in	order	as	I
worked	late	nights	in	the	office	and	sometimes	at	home	to	write	this	book.

Thank	you	to	my	kids,	Victor	and	Eli,	who	are	awesome	and	my
inspiration;	I	love	you	both	very	much.	And	thank	you	to	my	parents	for
putting	me	in	a	position	to	be	able	to	learn	things	and	get	second,	third,
and	fourth	chances	at	life.

My	thanks	go	to	many	groups	and	individuals:	to	the	the	entire	AWS
Mobile	team	who	took	a	chance	on	hiring	me	fresh	out	of	a	tumultuous
consulting	career	to	join	their	team,	and	gave	me	the	opportunity	to	work
with	the	smartest	people	I’ve	ever	met.	To	Michael	Paris,	Mohit
Srivastava,	Dennis	Hills,	Adrian	Hall,	Richard	Threlkald,	Michael
Labieniec,	Rohan	Deshpande,	Amit	Patel,	and	all	of	my	other	teammates
who	have	showed	me	the	ropes	and	helped	me	learn	everything	I	needed
to	learn	to	get	going	at	my	new	job.	To	Russ	Davis,	Lee	Johnson,	and
SchoolStatus	for	giving	the	opportunity	to	learn	bleeding-edge	technology
on	the	job	that	ultimately	catapulted	my	career	into	consulting.	To	Brian
Noah,	Nate	Lubeck,	and	my	team	at	Egood,	the	first	“real”	tech	job	I	had,
for	exposing	me	to	the	world	of	meetups	and	conferences	as	well	as	what
it	takes	to	be	a	great	developer.



Chapter	1.	Full	Stack
Development	in	the	Era	of
Serverless	Computing

People	have	typically	associated	cloud	computing	with	backend
development	and	DevOps.	However,	over	the	past	few	years,	this	has
started	to	change.	With	the	rise	of	functions	as	a	service	(FaaS),	combined
with	powerful	abstractions	in	the	form	of	managed	services,	cloud
providers	have	lowered	the	barrier	to	entry	for	developers	new	to	cloud
computing,	and	for	traditionally	frontend	developers.

Using	modern	tools,	frameworks,	and	services	like	Amazon	Web	Services
(AWS)	Amplify	and	Firebase	(among	others),	a	single	developer	can
leverage	their	existing	skill	set	and	knowledge	of	a	single	framework	and
ecosystem	(like	JavaScript)	to	build	scalable	full	stack	applications
complete	with	all	of	the	features	that	would	in	the	past	have	required
teams	of	highly	skilled	backend	and	DevOps	engineers	to	build	and
maintain.

This	book	focuses	on	bridging	the	gap	between	frontend	and	backend
development	by	taking	advantage	of	this	new	generation	of	tools	and
services	using	the	Amplify	Framework.	Here	you’ll	learn	how	to	build
scalable	applications	in	the	cloud	directly	from	your	frontend	environment
using	the	Amplify	Command	Line	Interface	(CLI).	You’ll	create	and
interact	with	various	APIs	and	AWS	services,	such	as	authentication	using
Amazon	Cognito,	cloud	storage	using	Amazon	S3,	APIs	using	Amazon



API	Gateway	and	AWS	AppSync,	and	databases	using	Amazon
DynamoDB.

By	the	final	chapter,	you	will	understand	how	to	build	real-world	full	stack
applications	in	the	cloud	leveraging	AWS	services	on	the	backend	and
React	on	the	frontend.	You’ll	also	learn	how	to	use	modern	APIs	from
React,	like	hooks,	and	functional	components,	as	well	as	React	Context	for
global	state	management.

Modern	Serverless	Philosophy
The	term	serverless	is	commonly	associated	with	FaaS.	Though	you	will
find	varying	definitions	as	to	what	it	means,	the	term	has	recently	grown
to	encompass	more	of	a	philosophy	than	a	shared	definition.

Many	times	when	people	talk	about	serverless,	they	are	really	describing
how	to	most	efficiently	deliver	business	value	with	a	focus	on	writing
business	logic,	instead	of	coding	supporting	infrastructure	for	your
business	logic.	Adopting	a	serverless	mindset	allows	you	to	do	this	by
consciously	going	out	of	your	way	to	find	and	leverage	FaaS,	managed
services,	and	smart	abstractions,	while	only	building	custom	solutions	if
an	existing	service	just	doesn’t	yet	exist.

More	and	more	companies	and	developers	are	taking	this	approach,	as	it
doesn’t	make	sense	to	reinvent	the	wheel.	With	the	increase	in	popularity
of	this	philosophy,	there	has	also	been	an	explosion	of	services	and	tools
made	available	from	startups	and	cloud	providers	to	provide	offerings	that
simplify	backend	complexity.

For	an	academic	take	on	what	serverless	means,	you	may	wish	to	read	the



2019	paper	written	by	a	group	at	UC	Berkeley,	“Cloud	Programming
Simplified:	A	Berkeley	View	on	Serverless	Computing,” .	In	this	paper,
the	authors	expanded	the	definition	of	serverless:

While	cloud	functions—packaged	as	FaaS	(Function	as	a	Service)
offerings—represent	the	core	of	serverless	computing,	cloud	platforms
also	provide	specialized	serverless	frameworks	that	cater	to	specific
application	requirements	as	BaaS	(Backend	as	a	Service)	offerings.	Put
simply,	serverless	computing	=	FaaS	+	BaaS.

Backend	as	a	service	(BaaS)	typically	refers	to	managed	services	like
databases	(Firestore,	Amazon	DynamoDB),	authentication	services
(Auth0,	Amazon	Cognito),	and	artificial	intelligence	services	(Amazon
Rekognition,	Amazon	Comprehend),	among	other	managed	services.
Berkeley’s	redefinition	of	what	serverless	means	underscores	what	is
happening	in	the	broader	spectrum	of	this	discussion	as	cloud	providers
begin	to	build	more	and	better-managed	services	and	put	them	in	this
bucket	of	serverless.

Characteristics	of	a	Serverless	Application

Now	that	you	understand	something	about	the	philosophy	around
serverless,	what	are	some	of	the	characteristics	of	a	serverless	application?
Though	you	may	get	varying	answers	as	to	what	serverless	is,	following
are	some	traits	and	characteristics	that	are	generally	agreed	upon	by	the
industry.

DECREASED	OPERATIONAL	RESPONSIBILITIES

Serverless	architectures	typically	allow	you	to	shift	more	of	your
operational	responsibilities	to	a	cloud	provider	or	third	party.

When	you	decide	to	implement	FaaS,	the	only	thing	you	should	have	to

1



worry	about	is	the	code	running	in	your	function.	All	of	the	server
patching,	updating,	maintaining,	and	upgrading	is	no	longer	your
responsibility.	This	goes	back	to	the	core	of	what	cloud	computing,	and	by
extension	serverless,	attempts	to	offer:	a	way	to	spend	less	time	managing
infrastructure	and	spend	more	time	building	features	and	delivering
business	value.

HEAVY	USE	OF	MANAGED	SERVICES

Managed	services	usually	assume	responsibility	for	providing	a	defined
set	of	features.	They	are	serverless	in	the	sense	that	they	scale	seamlessly,
don’t	require	any	server	operations	or	need	to	manage	uptime,	and,	most
importantly,	are	essentially	codeless.

Benefits	of	a	Serverless	Architecture

These	days	there	are	many	ways	to	architect	an	application.	The	decisions
that	are	made	early	on	will	impact	not	only	the	application	life	cycle,	but
also	the	development	teams	and	ultimately	the	company	or	organization.
In	this	book,	I	advocate	for	building	your	applications	using	serverless
technologies	and	methodologies	and	lay	out	some	ways	in	which	you	can
do	this.	But	what	are	the	advantages	of	building	your	application	like	this,
and	why	is	serverless	becoming	so	popular?

SCALABILITY

One	of	the	primary	advantages	of	going	serverless	is	out-of-the-box
scalability.	When	building	your	application,	you	don’t	have	to	worry	about
what	would	happen	if	the	application	becomes	wildly	popular	and	you
onboard	a	large	number	of	new	users	quickly—the	cloud	provider	will
handle	this	for	you.



The	cloud	provider	automatically	scales	your	application,	running	the	code
in	response	to	each	interaction.	In	a	serverless	function,	your	code	runs	in
parallel	and	individually	processes	each	trigger	(in	turn,	scaling	with	the
size	of	the	workload).

Not	having	to	worry	about	scaling	your	servers	and	databases	is	a	great
advantage.	It’s	one	less	thing	you	have	to	worry	about	when	architecting
your	application.

COST

The	pricing	models	of	serverless	architectures	and	traditional	cloud-based
or	on-premises	infrastructures	differ	greatly.

With	the	traditional	approach,	you	often	paid	for	computing	resources
whether	or	not	they	were	utilized.	This	meant	that	if	you	wanted	to	make
sure	your	application	would	scale,	you	needed	to	prepare	for	the	largest
workload	you	thought	you	might	see	regardless	of	whether	you	actually
reached	that	point.	This	approach	meant	you	were	paying	for	unused
resources	for	the	majority	of	the	life	of	your	application.

With	serverless	technologies,	you	pay	only	for	what	you	use.	With	FaaS,
you’re	billed	based	on	the	number	of	requests	for	your	functions,	the	time
it	takes	for	your	function	code	to	execute,	and	the	reserved	memory	for
each	function.	With	managed	services	like	Amazon	Rekognition,	you	are
only	charged	for	the	images	processed	and	minutes	of	video	processed,
etc.—again	paying	only	for	what	you	use.

This	allows	you	to	build	features	and	applications	with	essentially	no	up-
front	infrastructure	costs.	Only	if	your	application	begins	seeing	increasing
adoption	and	scaling	do	you	begin	to	have	to	pay	for	the	service.



The	bill	from	your	cloud	provider	is	only	one	part	of	the	total	cost	of	your
cloud	infrastructure—there’s	also	the	operations’	salaries.	That	cost
decreases	if	you	have	fewer	ops	resources.

In	addition,	building	applications	in	this	way	usually	facilitates	a	faster
time	to	market,	decreasing	overall	development	time	and,	therefore,
development	costs.

DEVELOPER	VELOCITY

With	fewer	features	to	build,	developer	velocity	increases.	Being	able	to
spin	up	the	types	of	features	that	are	typical	for	most	applications	(e.g.,
databases,	authentication,	storage,	and	APIs)	allows	you	to	quickly	focus
on	writing	the	core	functionality	and	business	logic	for	the	features	that
you	want	to	deliver.

EXPERIMENTATION

If	you	are	not	investing	a	lot	of	time	building	out	repetitive	features,	you
are	able	to	experiment	more	easily	and	with	less	risk.

When	shipping	a	new	feature,	you	often	assess	the	risk	(time	and	money
involved	with	building	the	feature)	against	the	possible	return	on
investment	(ROI).	As	the	risk	involved	in	trying	out	new	things	decreases,
you	are	free	to	test	out	ideas	that	in	the	past	may	not	have	seen	the	light	of
day.

A/B	testing	(also	known	as	bucket	testing	or	split	testing)	is	a	way	to
compare	multiple	versions	of	an	application	to	determine	which	one
performs	best.	Because	of	the	increase	in	developer	velocity,	serverless
applications	usually	enable	you	to	A/B	test	different	ideas	much	more
quickly	and	easily.



SECURITY	AND	STABILITY

Because	the	services	that	you	are	subscribing	to	are	the	core	competency
of	the	service	provider	maintaining	them,	you	are	usually	getting
something	that	is	much	more	polished	and	more	secure	than	you	could
have	built	yourself.	Imagine	that	a	company’s	core	business	model	has
been,	for	many	years,	the	delivery	of	a	pristine	authentication	service,
having	fixed	issues	and	edge	cases	for	thousands	of	companies	and
customers.

Now,	imagine	trying	to	replicate	a	service	like	that	within	your	own	team
or	organization.	Though	this	is	completely	possible,	choosing	to	use	a
service	built	and	maintained	by	those	whose	only	job	is	to	build	and
maintain	that	exact	thing	is	a	safe	bet	that	will	ultimately	save	you	time
and	money.

Another	advantage	of	using	these	service	providers	is	that	they	will	strive
for	the	least	amount	of	downtime	possible.	This	means	that	they	are	taking
on	the	burden	of	not	only	building,	deploying,	and	maintaining	these
services,	but	also	doing	everything	they	can	to	make	sure	that	they	are
stable.

LESS	CODE

Most	engineers	will	agree	that,	at	the	end	of	the	day,	code	is	a	liability.
What	has	value	is	the	feature	that	the	code	delivers,	not	the	code	itself.
When	you	find	ways	to	deliver	these	features	while	simultaneously
limiting	the	amount	of	code	you	need	to	maintain,	and	even	doing	away
with	the	code	completely,	you	are	reducing	overall	complexity	in	your
application.

With	less	complexity	comes	fewer	bugs,	easier	onboarding	for	new



engineers,	and	overall	less	cognitive	load	for	those	maintaining	and	adding
new	features.	A	developer	can	hook	into	these	services	and	implement
features	with	no	knowledge	of	the	actual	backend	implementation	and
with	little	to	no	backend	code	at	all.

Different	Implementations	of	Serverless

Let’s	take	a	look	at	the	different	ways	that	you	can	build	serverless
applications	as	well	as	some	of	the	differences	between	them.

SERVERLESS	FRAMEWORK

One	of	the	first	serverless	implementations,	the	Serverless	Framework,	is
the	most	popular.	It	is	a	free	and	open	source	framework,	launched	in
October	2015	under	the	name	JAWS,	and	written	using	Node.js.	At	first,
the	Serverless	Framework	only	supported	AWS,	but	then	it	added	support
for	cloud	providers	like	Google	and	Microsoft	Azure,	among	others.

The	Serverless	Framework	utilizes	a	combination	of	a	configuration	file
(serverless.yml),	CLI,	and	function	code	to	provide	a	nice	experience	for
people	wanting	to	deploy	serverless	functions	and	other	AWS	services	to
the	cloud	from	a	local	environment.	Getting	up	and	running	with	the
Serverless	Framework	can	present	a	somewhat	steep	learning	curve,
especially	for	developers	new	to	cloud	computing.	There	is	much
terminology	to	learn	and	a	lot	that	goes	into	understanding	how	cloud
services	work	in	order	to	build	anything	more	than	just	a	“Hello	World”
application.

Overall,	the	Serverless	Framework	is	a	good	option	if	you	understand	to
some	extent	how	cloud	infrastructure	works,	and	are	looking	for
something	that	will	work	with	other	cloud	providers	in	addition	to	AWS.



THE	AWS	SERVERLESS	APPLICATION	MODEL

The	AWS	Serverless	Application	Model	(AWS	SAM)	is	an	open	source
framework,	released	November	18,	2016,	and	built	and	maintained	by
AWS	and	the	community.	This	framework	only	supports	AWS.

SAM	allows	you	to	build	serverless	applications	by	defining	the	API
Gateway	APIs,	AWS	Lambda	functions,	and	Amazon	DynamoDB	tables
needed	by	your	serverless	application	in	YAML	files.	It	uses	a
combination	of	YAML	configuration	and	function	code	and	a	CLI	to
create,	manage,	and	deploy	serverless	applications.

One	advantage	of	SAM	is	that	it	is	an	extension	of	AWS	CloudFormation,
which	is	very	powerful	and	allows	you	to	do	almost	anything	in	AWS.
This	can	also	be	a	disadvantage	to	developers	new	to	cloud	computing	and
not	familiar	with	AWS	services,	permissions,	roles,	and	terminology,	as
you	have	to	already	be	familiar	with	how	the	services	work,	the	naming
conventions	to	set	them	up,	and	how	to	wire	it	all	together.

SAM	is	a	good	choice	if	you	are	familiar	with	AWS	and	are	only
deploying	your	serverless	applications	to	AWS.

AMPLIFY	FRAMEWORK

The	Amplify	Framework	is	a	combination	of	four	things:	CLI,	client
library,	toolchain,	and	web-hosting	platform.	Amplify’s	purpose	is	to
provide	an	easy	way	for	developers	to	build	and	deploy	full	stack	web	and
mobile	applications	that	leverage	the	cloud.	It	enables	not	only	features
such	as	serverless	functions	and	authentication,	but	also	GraphQL	APIs,
machine	learning	(ML),	storage,	analytics,	push	notifications,	and	more.

Amplify	provides	an	easy	entry	point	into	the	cloud	by	doing	away	with

https://oreil.ly/ApIoW


terminology	and	acronyms	that	may	be	unfamiliar	to	newcomers	to	AWS
and	instead	uses	a	category-name	approach	for	referring	to	services.
Rather	than	referring	to	the	authentication	service	as	Amazon	Cognito,	it’s
referred	to	as	auth,	and	the	framework	just	uses	Amazon	Cognito	under
the	hood.

HOW	DO	THE	FOUR	PIECES	FIT	TOGETHER?

The	CLI	allows	you	to	create,	configure,	and	deploy	cloud	services	from	the	command	line.

The	Client	library	allows	you	to	connect	to	and	interact	with	these	cloud	services	from	your	web
or	mobile	application.

The	toolchain	helps	facilitate	and	speed	development	by	doing	things	like	generating	code	and
serverless	function	boilerplates.

The	hosting	platform	allows	you	to	deploy	your	application	to	a	live	domain	complete	with	atomic
deployments,	continuous	integration	(CI),	continuous	deployment	(CD),	custom	domains,	and
more.

OTHER	OPTIONS

More	companies	have	started	providing	abstractions	over	serverless
functions,	usually	intending	to	improve	the	negative	user	experience
traditionally	associated	with	working	directly	with	AWS	Lambda.	A	few
popular	options	among	these	are	Apex,	Vercel,	Cloudflare	Workers,	and
Netlify	Functions.

Many	of	these	tools	and	frameworks	still	actually	use	AWS	or	some	other
cloud	provider	under	the	hood,	so	you	are	essentially	going	to	be	paying
more	in	exchange	for	what	they	argue	is	a	better	user	experience.	Most	of
these	tools	do	not	offer	much	of	the	other	suite	of	services	available	from
AWS	or	other	cloud	providers;	things	like	authentication,	AI	and	ML
services,	complex	object	storage,	and	analytics	may	or	may	not	be	part	of
their	offerings.



If	you	are	interested	in	learning	other	ways	of	developing	serverless
applications,	I	would	recommend	checking	out	these	options.

Introduction	to	AWS
In	this	section,	I’ll	give	an	overview	of	AWS	and	talk	about	why
something	like	the	Amplify	Framework	exists.

About	AWS

AWS,	a	subsidiary	of	Amazon,	was	the	first	company	to	provide	on-
demand	cloud	computing	platforms	to	developers.	It	first	launched	in	2004
with	a	single	service:	Amazon	Simple	Queue	Service	(Amazon	SQS).	In
2006,	they	officially	relaunched	with	a	total	of	three	services:	Amazon
SQS,	Amazon	S3,	and	Amazon	EC2.	Since	2006,	AWS	has	grown	and
remains	the	largest	cloud	computing	provider	in	the	world,	continuing	to
add	services	every	year.	AWS	now	offers	more	than	two	hundred	services.

With	the	current	state	of	cloud	computing	moving	more	toward	serverless
technologies,	the	barrier	to	entry	is	being	lowered.	However,	it	is	still
often	tough	for	either	a	frontend	developer	or	someone	new	to	cloud
computing	to	get	started.

With	this	new	serverless	paradigm,	AWS	saw	an	opportunity	to	create	a
framework	that	focused	on	enabling	these	traditionally	frontend
developers	and	developers	new	to	cloud	computing	to	get	started	building
cloud	applications.

Full	Stack	Serverless	on	AWS

Full	stack	serverless	is	about	providing	developers	with	everything	needed



on	both	ends	of	the	stack	to	accomplish	their	objective	of	building	scalable
applications	as	quickly	as	possible.	Here,	we’ll	look	at	how	you	can	build
applications	in	this	way	using	AWS	tools	and	services.

Amplify	CLI

If	you’re	starting	out	with	AWS,	the	sheer	number	of	services	can	be
overwhelming.	In	addition	to	the	many	services	to	sort	between,	each
service	often	has	its	own	steep	learning	curve.	To	help	ease	this,	AWS	has
created	the	Amplify	CLI.

The	Amplify	CLI	provides	an	easy	entry	point	for	developers	wanting	to
build	applications	on	AWS.	The	CLI	allows	developers	to	create,
configure,	update,	and	delete	cloud	services	directly	from	their	frontend
environment.

Instead	of	a	service-name	approach	(as	used	by	the	AWS	Console	and
many	other	tools,	like	CloudFormation),	the	CLI	takes	a	category-name
approach.	AWS	has	many	service	names	(for	example,	Amazon	S3,
Amazon	Cognito,	and	Amazon	Pinpoint),	which	can	be	confusing	to	new
developers.	Rather	than	using	the	service	names	to	create	and	configure
these	services,	the	CLI	uses	names	like	storage	(Amazon	S3),	auth
(Amazon	Cognito),	and	analytics	(Amazon	Pinpoint)	to	give	you	a	way	to
understand	what	the	service	actually	does	versus	simply	giving	the	service
name.

The	CLI	has	a	host	of	commands	that	allow	you	to	create,	update,
configure,	and	remove	services	without	having	to	leave	your	frontend
environment.	You	can	also	spin	up	and	deploy	new	environments	using	the
CLI	in	order	to	test	out	new	features	without	affecting	the	main
environment.



Once	you’ve	created	and	deployed	features	using	the	CLI,	you	can	then
use	the	Amplify	client	libraries	to	begin	interacting	with	the	services	from
your	client-side	application.

AMPLIFY	CLIENT

Building	full	stack	applications	requires	a	combination	of	both	client-side
tooling	and	backend	services.	In	the	past,	the	main	way	to	interact	with
AWS	services	was	using	an	AWS	software	development	kit	(SDK)	such	as
Java,	.NET,	Node.js,	and	Python.	These	SDKs	work	well,	but	none	of
them	are	particularly	well-suited	for	client-side	development.	Before
Amplify,	there	was	no	simple	method	for	building	client-side	applications
using	AWS.	If	you	look	at	the	documentation	for	the	AWS	Node.js	SDK,
you’ll	also	notice	that	it	presents	a	steep	learning	curve	for	developers	new
to	AWS.

The	Amplify	client	is	a	library	made	especially	to	provide	an	easy-to-use
API	for	JavaScript	applications	that	need	to	interact	with	AWS	services.
Amplify	also	has	client	SDKs	for	React	Native,	native	iOS,	and	native
Android.

The	approach	that	the	Amplify	client	takes	is	to	provide	a	higher	level	of
abstraction	and	bake	in	best	practices	to	provide	a	declarative,	easy-to-use
API.	At	the	same	time,	it	gives	you	full	control	over	the	interactions	with
your	backend.	It’s	also	built	especially	with	the	client	in	mind,	with
features	like	WebSocket	and	GraphQL	subscription	support.	It	utilizes
localStorage	for	the	browser	and	AsyncStorage	for	React	Native	to	store
security	tokens	like	IdTokens	and	AccessTokens	to	persist	user
authentication.

Amplify	also	provides	UI	components	for	popular	frontend	and	mobile



frameworks	including	React,	React	Native,	Vue,	Angular,	Ionic,	native
Android,	and	native	iOS.	These	framework-specific	components	allow
you	to	quickly	get	up	and	running	with	common	features	like
authentication	and	complex	object	storage	and	retrieval	without	having	to
build	out	the	frontend	UI	and	deal	with	state.

The	Amplify	Framework	does	not	support	the	entire	suite	of	AWS
services;	instead,	it	supports	a	subset	of	them	with	almost	all	of	them
falling	into	the	category	of	serverless.	Using	Amplify,	it	wouldn’t	make
much	sense	to	offer	support	for	interacting	with	with	EC2,	but	it	makes	a
lot	of	sense	to	offer	support	for	working	with	Representational	State
Transfer	(REST)	and	GraphQL	APIs.

Amplify	was	created	as	an	end-to-end	solution	to	fill	a	previously	unfilled
gap,	but	it	also	encompasses	a	new	way	to	build	full	stack	cloud
applications.

AWS	APPSYNC

AWS	AppSync	is	a	managed	API	layer	that	uses	GraphQL	to	make	it	easy
for	applications	to	interact	with	any	data	source,	REST	API,	or
microservice.

The	API	layer	is	one	of	the	most	important	parts	of	an	application.	Modern
applications	typically	interact	with	a	large	number	of	backend	services	and
APIs;	things	like	databases,	managed	services,	third-party	APIs,	and
storage	solutions,	among	others.	Microservice	architecture	is	the	usual
term	used	for	a	large	application	built	using	a	combination	of	modular
components	or	services.

Most	services	and	APIs	will	have	varying	implementation	details,	which



creates	a	challenge	when	you’re	working	with	a	microservice	architecture.
This	leads	to	inconsistent	and	sometimes	messy	code,	as	well	as	more
cognitive	load	on	the	frontend	developers	making	requests	to	these	APIs.

One	good	approach	to	working	with	a	microservice	architecture	is	to
provide	a	consistent	API	gateway	layer	that	then	takes	all	of	the	requests
and	forwards	them	on	to	the	backend	services.	This	allows	a	consistent
interaction	layer	for	your	client	to	interact	with,	making	development
easier	on	the	frontend.

GraphQL,	a	technology	created	and	open	sourced	by	Facebook,	offers	an
especially	good	abstraction	for	creating	an	API	gateway.	GraphQL
introduces	a	defined	and	consistent	specification	for	interacting	with	APIs
in	the	form	of	three	operations:	queries	(reads),	mutations
(writes/updates),	and	subscriptions	(real-time	data).	These	operations	are
defined	as	part	of	a	main	schema	that	also	provides	a	contract	between	the
client	and	the	server	in	the	form	of	GraphQL	types.	GraphQL	operations
are	not	bound	to	any	specific	data	source,	so	you	as	a	developer	are	free	to
use	them	to	interact	with	anything	from	a	database,	an	HTTP	endpoint,	a
microservice,	or	even	a	serverless	function.

Typically,	when	building	a	GraphQL	API,	you	need	to	deal	with	building,
deploying,	maintaining,	and	configuring	your	own	API.	With	AWS
AppSync,	you	can	instead	offload	the	server	and	API	management	as	well
as	the	security	to	AWS.

Modern	applications	often	also	have	concerns	such	as	real-time	and	offline
support.	Another	benefit	of	AppSync	is	that	it	has	built-in	support	for
offline	(Amplify	client	SDKs)	as	well	as	real	time	(GraphQL
subscriptions)	to	enable	developers	to	build	these	types	of	applications.



In	this	book,	you	will	be	using	AWS	AppSync	along	with	various	data
sources	(like	DynamoDB	for	NoSQL	and	AWS	Lambda	for	serverless
functions)	as	the	main	API	layer.

Introduction	to	the	AWS	Amplify	CLI
You	will	be	using	Amplify	CLI	throughout	this	book	to	create	and	manage
your	cloud	services.	To	learn	how	it	works,	you’ll	be	creating	and
deploying	a	service	using	the	CLI	in	this	section.	Once	the	service	is
deployed,	you’ll	also	learn	how	to	remove	it	and	then	delete	any	backend
resources	associated	with	the	deployment.	Let’s	take	a	look	at	how	you
can	create	your	first	service.

Installing	and	Configuring	the	Amplify	CLI

To	get	started,	you	first	need	to	install	and	configure	the	Amplify	CLI:

~	npm	install	-g	@aws-amplify/cli

NOTE
To	use	the	CLI,	you	will	first	need	to	have	Node.js	version	10.x	or	greater	and	npm
version	5.x	or	greater	installed	on	your	machine.	To	install	Node.js,	I	recommend
either	visiting	the	Node.js	installation	page	and	following	the	installation	instructions
or	using	Node	Version	Manager	(NVM).

After	the	CLI	has	been	installed,	you	next	need	to	configure	it	with	an
identity	and	access	management	(IAM)	user	in	your	AWS	account.	To	do
so,	you’ll	configure	the	CLI	with	a	reference	to	a	set	of	user	credentials
(access	key	ID	and	secret	access	key).	Using	these	credentials,	you’ll	be
able	to	create	AWS	services	on	behalf	of	this	user	directly	from	the	CLI.

https://nodejs.org/en
https://github.com/nvm-sh/nvm


To	create	a	new	user	and	configure	the	CLI,	you’ll	run	the	configure
command:

~	amplify	configure

This	will	walk	you	through	the	following	steps:

1.	 Specify	the	AWS	region.

This	will	allow	you	to	choose	the	region	in	which	you’d	like	to
create	your	user	(and,	by	extension,	the	services	associated	with
this	user).	Choose	the	region	closest	to	you	or	a	preferred	region.

2.	 Specify	the	username.

This	name	will	be	the	local	reference	of	the	user	that	you	will	be
creating	in	your	AWS	account.	I	suggest	using	a	name	that	you’ll
be	able	to	recognize	later	when	referencing	it,	such	as	amplify-cli-
us-east-1-user	or	mycompany-cli-admin.

Once	you	enter	your	name,	the	CLI	will	open	up	the	AWS	IAM
dashboard.	From	here,	you	can	accept	the	defaults	by	clicking	Next:
Permissions,	Next:	Tags,	Next:	Review,	and	Create	user	to	create	the	IAM
user.

In	the	next	screen,	you	will	be	given	the	IAM	user	credentials:	the	access
key	ID	and	secret	access	key.	See	Figure	1-1.



Figure	1-1.	AWS	IAM	dashboard

Back	in	the	CLI,	paste	in	the	values	for	the	access	key	ID	and	secret
access	key.	Now	you’ve	successfully	configured	the	CLI	and	you	can
begin	creating	new	services.

Initializing	Your	First	Amplify	Project

Now	that	the	CLI	has	been	installed	and	configured,	you	can	create	your
first	project.	This	step	is	usually	done	within	the	root	of	your	client
application.	Since	you	will	be	using	React	for	most	of	this	book,	we’ll
start	by	initializing	a	new	React	project:

~	npx	create-react-app	amplify-app



#	after	creating	the	React	app,	change	into	the	new	directory

~	cd	amplify-app

Now	you	need	to	install	the	Amplify	that	you’ll	be	using	on	the	client.	The
libraries	you’ll	be	using	are	AWS	Amplify	and	AWS	Amplify	React	for
the	React-specific	UI	components:

~	npm	install	aws-amplify	@aws-amplify/ui-react

Next,	you	can	create	an	Amplify	project.	To	do	so,	you’ll	run	the	init
command:

~	amplify	init

This	will	walk	you	through	the	following	steps:

1.	 Enter	a	name	for	the	project.

This	will	be	the	local	name	for	the	project,	usually	something	that
describes	what	the	project	is	or	what	it	does.

2.	 Enter	a	name	for	the	environment.

This	will	be	a	reference	to	the	initial	environment	that	you	will	be
working	in.	Typical	environments	in	this	workflow	could	be
something	like	dev,	local,	or	prod	but	could	be	anything	that
makes	sense	to	you.

3.	 Choose	your	default	editor.

This	will	set	your	editor	preference.	The	CLI	will	later	use	this
preference	to	open	your	text	editor	with	files	that	are	part	of	the
current	project.

4.	 Choose	the	type	of	app	that	you’re	building.

This	will	determine	whether	the	CLI	should	configure,	build,	and
run	commands	if	you	are	using	JavaScript.	For	this	example,
choose	javascript.



5.	 What	JavaScript	framework	are	you	using?

This	will	determine	a	few	base	build	and	start	commands.	For	this
example,	choose	react.

6.	 Choose	your	source	directory	path.

This	allows	you	to	set	the	directory	where	your	source	code	will
live.	For	this	example,	choose	src.

7.	 Choose	your	distribution	directory	path.

For	web	projects,	this	will	be	the	folder	containing	the	complied
JavaScript	source	code	as	well	as	your	favicon,	HTML,	and	CSS
files.	For	this	example,	choose	build.

8.	 Choose	your	build	command.

This	specifies	the	command	for	compiling	and	bundling	your
JavaScript	code.	For	this	example,	use	npm	run-script	build.

9.	 Choose	your	start	command.

This	specifies	the	command	to	server	your	application	locally.	For
this	example,	use	npm	run-script	start.

10.	 Do	you	want	to	use	an	AWS	profile?

Here,	choose	Y	and	then	pick	the	AWS	profile	you	created	when
you	ran	amplify	configure.

Now,	the	Amplify	CLI	will	initialize	your	new	Amplify	project.	When	the
initialization	is	complete,	you	will	have	two	additional	resources	created
for	you	in	your	project:	a	file	called	aws-exports	located	in	the	src
directory	and	a	folder	named	amplify	located	in	your	root	directory.

The	aws-exports	file

The	aws-exports	file	is	a	key-value	pairing	of	the	resource	categories
created	for	you	by	the	CLI	along	with	their	credentials.



The	amplify	folder

This	folder	holds	all	of	the	code	and	configuration	files	for	your
Amplify	project.	In	this	folder	you’ll	see	two	subfolders:	the	backend
and	#current-cloud-backend	folders.

The	backend	folder

This	folder	contains	all	of	the	local	code	for	your	project	such	as
the	GraphQL	schema	for	an	AppSync	API,	the	source	code	for	any
serverless	functions,	and	infrastructure	as	code	representing	the
current	local	status	of	the	Amplify	project.

The	#current-cloud-backend	folders

This	folder	holds	the	code	and	configurations	that	reflect	what
resources	were	deployed	in	the	cloud	with	your	last	Amplify	push
command.	It	helps	the	CLI	differentiate	between	the	configuration
of	the	resources	already	provisioned	in	the	cloud	and	what	is
currently	in	your	local	backend	directory	(which	reflects	your	local
changes).

Now	that	you’ve	initialized	your	project,	you	can	add	your	first	cloud
service:	authentication.

Creating	and	Deploying	Your	First	Service

To	create	a	new	service,	you	can	use	the	add	command	from	Amplify:

~	amplify	add	auth

This	will	walk	you	through	the	following	steps:

1.	 Do	you	want	to	use	the	default	authentication	and	security
configuration?

This	gives	you	the	option	of	creating	an	authentication	service



using	a	default	configuration	(MFA	on	sign-up,	password	at	sign-
in),	creating	an	authentication	configuration	with	social	providers,
or	creating	a	completely	custom	authentication	configuration.	For
this	example,	choose	Default	configuration.

2.	 How	do	you	want	users	to	be	able	to	sign	in?

This	will	allow	you	to	specify	the	required	sign-in	property.	For
this	example,	accept	the	default	by	choosing	Username.

3.	 Do	you	want	to	configure	advanced	settings?

This	will	allow	you	to	walk	through	additional	advanced	settings
for	things	like	additional	sign-up	attributes	and	Lambda	triggers.
You	do	not	need	any	of	these	for	this	example,	so	accept	the
default	by	choosing	No,	I	am	done.

Now,	you’ve	successfully	configured	the	authentication	service
and	are	now	ready	to	deploy.	To	deploy	the	authentication
service,	you	can	run	the	push	command:

~	amplify	push

4.	 Are	you	sure	you	want	to	continue?

Choose	Y.

After	the	deployment	is	complete,	your	authentication	service	has
successfully	been	created.	Congratulations,	you’ve	deployed	your	first
feature.	Now,	let’s	test	it	out.

There	are	several	ways	to	interact	with	the	authentication	service	in	a
React	application.	You	can	use	the	Auth	class	from	Amplify,	which	has
over	30	methods	available	(methods	like	signUp,	signIn,	signOut,
etc.),	or	you	can	use	the	framework-specific	components	like
withAuthenticator	that	will	scaffold	out	an	entire	authentication
flow,	complete	with	preconfigured	UI.	Let’s	try	out	the



withAuthenticator	higher-order	(HOC)	component.

First,	configure	the	React	app	to	work	with	Amplify.	To	do	so,	open
src/index.js	and	add	the	following	code	below	the	last	import	statement:

import	Amplify	from	'aws-amplify'

import	config	from	'./aws-exports'

Amplify.configure(config)

Now,	the	app	has	been	configured	and	you	can	begin	interacting	with	the
authentication	service.	Next,	open	src/App.js	and	update	the	file	with	the
following	code:

import	React	from	'react'

import	{	withAuthenticator,	AmplifySignOut	}	from	'@aws-

amplify/ui-react'

function	App()	{

		return	(

				<div>

						<h1>Hello	from	AWS	Amplify</h1>

						<AmplifySignOut	/>

				</div>

		)

}

export	default	withAuthenticator(App)

At	this	point,	you	can	test	it	out	by	launching	the	app:

~	npm	start

Now,	your	app	should	be	launched	with	the	preconfigured	authentication
flow	in	front	of	it.	See	Figure	1-2.



Figure	1-2.	withAuthenticator	HOC	component

Deleting	the	Resources

Once	you	no	longer	need	a	feature	or	a	project,	you	can	remove	it	using
the	CLI.

To	remove	an	individual	feature,	you	can	run	the	remove	command:

~	amplify	remove	auth



To	delete	an	entire	Amplify	project	along	with	all	of	the	corresponding
resources	that	have	been	deployed	in	your	account,	you	can	run	the
delete	command:

~	amplify	delete

Summary
Cloud	computing	is	growing	at	a	rapid	pace	as	more	and	more	companies
have	come	to	rely	on	the	cloud	for	the	majority	of	their	workloads.	With
this	growth	in	usage,	knowledge	of	cloud	computing	is	becoming	a
valuable	addition	to	your	skill	set.

The	paradigm	of	serverless,	a	subset	of	cloud	computing,	is	also	rapidly
growing	in	popularity	among	business	users,	as	it	offers	all	of	the	benefits
of	cloud	computing	while	also	featuring	automatic	scaling,	while	needing
little	to	no	maintenance.

Tools	like	the	Amplify	Framework	are	making	it	easier	for	developers	of
all	backgrounds	to	get	up	and	running	with	cloud	as	well	as	serverless
computing.	In	the	next	chapters,	you’ll	learn	how	to	build	real-world	full
stack	serverless	applications	in	the	cloud,	utilizing	cloud	services	and	the
Amplify	Framework.

1
	Eric	Jonas,	Johann	Schleier-Smith	et	al.	“Cloud	Programming	Simplified:	A	Berkeley	View
on	Serverless	Computing”	(Feb.	10,	2019),
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html


Chapter	2.	Getting	Started	with
AWS	Amplify

At	the	core	of	most	applications	is	the	data/API	layer.	This	layer	could
look	like	many	things.	In	the	serverless	world,	this	usually	will	be
composed	of	a	combination	of	API	endpoints	and	serverless	functions.
These	serverless	functions	could	be	doing	some	logic	and	returning	data,
interacting	with	a	database	of	some	kind,	or	even	interacting	with	another
API	endpoint.

There	are	two	main	ways	of	creating	APIs	with	Amplify:

A	combination	of	Amazon	API	Gateway	and	a	Lambda	function

A	GraphQL	API	connected	to	some	type	of	data	source	(database,
Lambda	function,	or	HTTP	endpoint)

API	Gateway	is	an	AWS	service	that	allows	you	to	create	API	endpoints
and	route	them	to	different	services,	often	via	a	Lambda	function.	When
you	make	an	API	call,	it	will	route	the	request	through	API	Gateway,
invoke	the	function,	and	return	the	response.	Using	the	Amplify	CLI,	you
can	create	both	the	API	Gateway	endpoint	as	well	as	the	Lambda	function;
the	CLI	will	automatically	configure	the	API	to	be	able	to	invoke	the
Lambda	function	via	an	HTTP	request.

Once	your	API	is	created,	you	then	need	a	way	to	interact	with	it.	Using
the	Amplify	client	you	will	be	able	to	send	requests	to	the	endpoint	using
the	Amplify	API	class.	The	API	class	allows	you	to	interact	with	both



GraphQL	APIs	as	well	as	API	Gateway	endpoints,	as	shown	in	Figure	2-1.

In	this	chapter,	you’ll	create	your	first	full	stack	serverless	app	that	will
interact	with	a	serverless	function	via	an	API	Gateway	endpoint.	You’ll
use	the	CLI	to	create	an	API	endpoint	as	well	as	a	serverless	function,	and
then	use	the	Amplify	client	libraries	to	interact	with	the	API.

Figure	2-1.	API	with	Lambda

At	first,	the	app	will	fetch	a	hardcoded	array	of	items	from	the	function.
You’ll	then	learn	how	to	update	the	function	to	make	an	asynchronous
HTTP	request	to	another	API	to	retrieve	data	and	return	it	to	the	client.

Creating	and	Deploying	a	Serverless



Function
At	the	core	of	many	serverless	applications	are	serverless	functions.
Serverless	functions	run	your	code	in	stateless	compute	containers	that	are
event-driven,	short-lived	(may	last	for	one	invocation),	and	fully	managed
by	the	cloud	provider	of	your	choice.	These	functions	scale	seamlessly	and
do	not	require	any	server	operations.

While	most	people	think	of	serverless	functions	as	being	invoked	or
triggered	by	an	API	call,	these	functions	can	also	be	triggered	by	a	variety
of	different	events.	In	addition	to	HTTP	requests,	a	few	popular	ways	to
invoke	a	serverless	function	are	via	an	image	upload	to	a	storage	service,	a
database	operation	(like	create,	update,	or	delete),	or	even	from	another
serverless	function.

Serverless	functions	scale	automatically,	so	there’s	no	need	to	worry	about
your	application	if	you	get	a	large	spike	in	traffic.	The	first	time	you
invoke	a	function,	the	service	provider	will	create	an	instance	of	the
function	and	run	its	handler	method	to	process	the	event.	After	the
function	finishes	and	returns	a	response,	it	will	remain	and	process
additional	events	if	they	come	in.	If	another	invocation	happens	while	the
first	event	is	still	processing,	the	service	will	then	create	another	instance.

Serverless	functions	also	have	a	payment	model	that	is	different	from
traditional	infrastructure.	With	services	like	AWS	Lambda,	you	only	pay
for	what	you	use	and	are	charged	based	on	the	number	of	requests	for	your
functions	and	the	time	it	takes	for	your	code	to	execute.	This	is	in	contrast
to	provisioning	and	paying	for	infrastructure	like	servers	regardless	of
whether	they	are	being	utilized.

Now	that	you	know	about	serverless	functions,	let’s	take	a	look	at	how



you	can	create	a	serverless	function	and	hook	it	up	to	an	API	that	will
invoke	it	from	an	HTTP	request.

Creating	the	React	Application	and	Installing	the
Dependencies

To	get	started,	you’ll	first	need	to	create	the	React	application.	To	do	so,
you	can	use	npx:

~	npx	create-react-app	amplify-react-app

~	cd	amplify-react-app

Next,	you	will	need	to	install	the	dependencies.	For	this	app,	you’ll	only
need	the	AWS	Amplify	library:

~	npm	install	aws-amplify

After	installing	the	dependencies,	you	can	now	initialize	a	new	Amplify
project	in	the	root	of	the	React	application:

~	amplify	init

?	Enter	a	name	for	the	project:	cryptoapp

?	Enter	a	name	for	the	environment:	local

?	Choose	your	default	editor:	<your-preferred-editor>

?	Choose	the	type	of	app	that	you're	building:	javascript

?	What	javascript	framework	are	you	using:	react

?	Source	Directory	Path:	src

?	Distribution	Directory	Path:	build

?	Build	Command:	npm	run-script	build

?	Start	Command:	npm	run-script	start

?	Do	you	want	to	use	an	AWS	profile?	Here,	choose	*Y*	and	pick	

the	AWS

		profile	you	created	when	you	ran	`amplify	configure`.

Now,	both	the	Amplify	project	and	the	React	app	have	been	successfully
created	and	you	can	begin	adding	new	features.



Creating	a	New	Serverless	Function	with	the	Amplify
CLI

In	the	next	step,	we’ll	create	the	serverless	function	that	you	will	be	using
for	this	app.	The	app	you	are	building	in	this	chapter	is	a	cryptocurrency
app.	At	first,	you	will	hardcode	an	array	of	cryptocurrency	information	in
the	function	and	return	it	to	the	client.	Later	in	this	chapter,	you’ll	update
this	function	to	call	another	API	(CoinLore)	and	asynchronously	fetch	and
return	data.

To	create	the	function,	run	the	following	command:

~	amplify	add	function

?	Select	which	capability	you	want	to	add:	Lambda	function

?	Provide	a	friendly	name	for	your	resource	to	be	used	as	a	

label	for

		this	category	in	the	project:	cryptofunction

?	Provide	the	AWS	Lambda	function	name:	cryptofunction

?	Choose	the	function	runtime	that	you	want	to	use:	NodeJS

?	Choose	the	function	template	that	you	want	to	use:	Serverless	

express

		function	(Integration	with	Amazon	API	Gateway)

?	Do	you	want	to	access	other	resources	created	in	this	project	

from

		your	Lambda	function?	No

?	Do	you	want	to	invoke	this	function	on	a	recurring	schedule?	

No

?	Do	you	want	to	configure	Lambda	layers	for	this	function?	No

?	Do	you	want	to	edit	the	local	Lambda	function	now?	No

TIP
If	the	function	has	successfully	been	created,	you	should	see	a	message	saying
“Successfully	added	resource	cryptofunction	locally.”

You	should	now	see	a	new	subfolder	located	within	the	amplify	directory



at	amplify/backend/function/cryptofunction.

Walking	Through	the	Code

When	you	created	this	resource,	a	new	folder	in	amplify/backend	was
created	named	function.	All	of	the	functions	created	by	the	CLI	will	be
stored	in	this	folder.	For	now,	you	only	have	a	single	function,
cryptofunction.	In	the	cryptofunction	folder,	you	will	see	a	couple	of
configuration	files	as	well	as	an	src	directory	where	the	main	function
code	is	located.

Serverless	functions	are	essentially	just	encapsulated	applications	running
on	their	own.	Because	the	function	you	created	is	in	JavaScript,	you’ll	see
that	there	are	all	of	the	things	you’d	typically	see	in	any	JavaScript
application,	including	package.json	and	index.js	files.

Next,	have	a	look	at	the	function	entry	point	located	at	src/index.js,	in	the
cryptofunction	folder.	In	this	file	you’ll	see	that	there	is	a	function	called
exports.handler.	This	is	the	entry	point	for	the	function	invocation.
When	the	function	is	invoked,	this	is	the	code	that	is	run.

You	can	handle	the	event	directly	in	this	function	if	you	would	like,	but
since	you	will	be	working	with	an	API,	a	more	useful	way	to	do	this	is	to
proxy	the	path	into	an	express	app	with	routing	(i.e.,
http://yourapi/<somepath>).	Doing	this	gives	you	multiple	routes	in	a
single	function	as	well	as	multiple	HTTP	request	methods	like	get,	put,
post,	and	delete	for	each	route.	The	serverless	express	framework
provides	an	easy	way	to	do	this	and	has	been	built	into	the	function
boilerplate	for	you.

In	index.js,	you	will	see	a	line	of	code	that	looks	like	this:



awsServerlessExpress.proxy(server,	event,	context);

This	code	is	where	the	event,	context,	and	path	are	proxied	to	the	express
server	running	in	app.js.

In	app.js,	you	will	then	be	able	to	create	HTTP	requests	against	whatever
routes	you	create	for	your	API	(this	example	being	a	/coins	route	to
fetch	cryptocurrency).

Creating	the	/coins	Route

Now	that	you	have	seen	how	the	application	is	structured,	let’s	create	a
new	route	in	app.js	and	return	some	data	from	it.	The	route	that	you	will
be	creating	is	a	/coins	route.	This	route	will	be	returning	an	object
containing	a	coins	array.

Let’s	add	the	new	route.	Before	the	first	app.get('/items')	route,
add	the	following	code:

/*	amplify/backend/function/cryptofunction/src/app.js	/*

app.get('/coins',	function(req,	res)	{

		const	coins	=	[

				{	name:	'Bitcoin',	symbol:	'BTC',	price_usd:	"10000"	},

				{	name:	'Ethereum',	symbol:	'ETH',	price_usd:	"400"	},

				{	name:	'Litecoin',	symbol:	'LTC',	price_usd:	"150"	}

		]

		res.json({

				coins

		})

})

This	new	route	has	a	hardcoded	array	of	cryptocurrency	information.
When	the	function	is	invoked	with	this	route,	it	will	respond	with	an
object	containing	a	single	property	named	coins	that	will	contain	the
coins	array.



Adding	the	API
Now	that	the	function	is	created	and	configured,	let’s	put	an	API	in	front
of	it	so	you	can	trigger	it	with	an	HTTP	request.

To	do	this,	you	will	be	using	Amazon	API	Gateway.	API	Gateway	is	a
fully	managed	service	that	enables	developers	to	create,	publish,	maintain,
monitor,	and	secure	REST	and	WebSocket	APIs.	API	Gateway	is	one	of
the	services	supported	by	both	the	Amplify	CLI	as	well	as	the	Amplify
client	library.

In	this	section,	you’ll	create	a	new	API	Gateway	endpoint	and	configure	it
to	invoke	the	Lambda	function	you	created	in	the	previous	section.

Creating	a	New	API

To	create	the	API,	you	can	use	the	Amplify	add	command.	From	the	root
of	the	project,	run	the	following	command	in	your	terminal:

~	amplify	add	api

?	Please	select	from	one	of	the	below	mentioned	services:	REST

?	Provide	a	friendly	name	for	your	resource	to	be	used	as	a	

label	for

		this	category	in	the	project:	cryptoapi

?	Provide	a	path:	/coins

?	Choose	a	Lambda	source:	Use	a	Lambda	function	already	added	in	

the

		current	Amplify	project

?	Choose	the	Lambda	function	to	invoke	by	this	path:	

cryptofunction

?	Restrict	API	access:	N

?	Do	you	want	to	add	another	path?	N

Deploying	the	API	and	the	Lambda	Function

Now	that	the	function	and	API	have	both	been	created,	you	need	to	deploy



them	to	your	account	to	make	them	live.	To	do	so,	you	can	run	the
Amplify	push	command:

~	amplify	push

?	Are	you	sure	you	want	to	continue?	Y

Once	the	deployment	has	successfully	completed,	the	services	are	live	and
ready	to	use.

You	can	use	the	Amplify	CLI	status	command	at	any	time	to	see	the
current	status	of	your	project.	The	status	command	will	list	out	all	of
the	currently	configured	services	in	your	project	and	give	you	the	status
for	each	of	them:

	~	amplify	status

Current	Environment:	local

|	Category	|	Resource	name		|	Operation	|	Provider	plugin			|

|	--------	|	--------------	|	---------	|	-----------------	|

|	Function	|	cryptofunction	|	No	Change	|	awscloudformation	|

|	Api						|	cryptoapi						|	No	Change	|	awscloudformation	|

The	main	thing	to	notice	in	this	status	output	is	the	Operation.	The
Operation	tells	you	what	will	happen	the	next	time	push	is	run	in	the
project.	The	Operation	property	will	be	set	to	Create,	Update,
Delete,	or	No	Change.

Interacting	with	the	New	API
Now	that	the	resources	have	been	deployed,	you	can	begin	interacting
with	the	API	from	the	React	application.

Configuring	the	Client	App	to	Work	with	Amplify



To	use	the	Amplify	client	library	in	any	application,	there	is	a	base
configuration	that	needs	to	be	set	up,	usually	at	the	root	level.	When	you
create	the	resources,	the	CLI	populates	the	aws-exports.js	file	with
information	about	your	resources.	You	will	use	this	file	to	configure	the
client	application	to	work	with	Amplify.

To	configure	the	app,	open	src/index.js	and	add	the	following	below	the
last	import:

import	Amplify	from	'aws-amplify'

import	config	from	'./aws-exports'

Amplify.configure(config)

The	Amplify	Client	API	Category

After	the	client	application	has	been	configured,	you	can	begin	interacting
with	your	resources.

The	Amplify	client	library	has	various	API	categories	that	can	be	imported
and	used	for	various	types	of	functionality,	including	Auth	for
authentication,	Storage	for	storing	items	in	S3,	and	API	for	interacting
with	REST	and	GraphQL	APIs.

In	this	section,	you	will	be	working	with	the	API	category.	API	has
various	methods	available—including	API.get,	API.post,	API.put,
and	API.del—for	interacting	with	REST	APIs,	and	API.graphql	for
interacting	with	GraphQL	APIs.

When	working	with	a	REST	API,	API	takes	in	three	arguments:

API.get(apiName:	String,	path:	String,	data?:	Object)

apiName



The	name	given	when	you	create	the	API	from	the	command	line.	In
our	example,	this	value	would	be	cryptoapi.

path

The	path	that	you	would	like	to	interact	with.	In	our	example,	we
created	/coins,	so	the	path	would	be	/coins.

data

This	is	an	optional	object	containing	any	properties	you’d	like	to	pass
to	the	API,	including	headers,	query	string	parameters,	or	a	body.

In	our	example,	the	API	call	is	going	to	look	like	this:

API.get('cryptoapi',	'/coins')

The	API	returns	a	promise,	meaning	you	can	handle	the	call	using	either	a
promise	or	an	async	function:

//	promise

API.get('cryptoapi',	'/coins')

		.then(data	=>	console.log(data))

		.catch(error	=>	console.log(error))

//	async	await

const	data	=	await	API.get('cryptoapi',	'/coins')

In	the	examples	in	this	book,	we’ll	be	handling	promises	using	async
functions.

Calling	the	API	and	Rendering	the	Data	in	React

Next,	let’s	call	the	API	and	render	the	data.	Update	src/App.js	with	the
following:

//	Import	useState	and	useEffect	hooks	from	React

import	React,	{	useState,	useEffect	}	from	'react'



//	Import	the	API	category	from	AWS	Amplify

import	{	API	}	from	'aws-amplify'

import	'./App.css';

function	App()	{

		//	Create	coins	variable	and	set	to	empty	array

		const	[coins,	updateCoins]	=	useState([])

		//	Define	function	to	all	API

		async	function	fetchCoins()	{

				const	data	=	await	API.get('cryptoapi',	'/coins')

				updateCoins(data.coins)

		}

		//	Call	fetchCoins	function	when	component	loads

		useEffect(()	=>	{

				fetchCoins()

		},	[])

		return	(

				<div	className="App">

						{

								coins.map((coin,	index)	=>	(

										<div	key={index}>

												<h2>{coin.name}	-	{coin.symbol}</h2>

												<h5>${coin.price_usd}</h5>

										</div>

								))

						}

				</div>

		);

}

export	default	App

Then,	run	the	app:

~	npm	start

When	the	app	loads,	you	should	see	a	list	of	coins	with	their	name,
symbol,	and	price,	as	shown	in	Figure	2-2.



Figure	2-2.	Fetching	data	from	the	API

Updating	the	Function	to	Call	Another	API
Next,	you’ll	update	the	function	to	call	another	API,	the	CoinLore	API,
that	will	return	dynamic	data	from	the	CoinLore	service.	The	user	will	be
able	to	add	set	filters	like	limit	and	start	to	limit	the	number	of	items
coming	back	from	the	API.

To	get	started,	you	will	first	need	a	way	to	interact	with	an	HTTP	endpoint
in	the	Lambda	function.	The	library	you	will	be	using	for	this	lesson	is	the
Axios	library.	Axios	is	a	promise-based	HTTP	client	for	the	browser	and
Node.js.

Installing	Axios



The	first	thing	you	need	to	do	is	install	the	Axios	package	in	your	function
folder	in	order	to	send	HTTP	requests	from	the	function.	Navigate	to
amplify/backend/function/cryptofunction/src,	install	Axios,	and	then
navigate	back	to	the	root	of	the	app:

~	cd	amplify/backend/function/cryptofunction/src

~	npm	install	axios

~	cd	../../../../../

Updating	the	Function

Next,	update	the	/coins	route	in
amplify/backend/function/cryptofunction/src/app.js	with	the	following:

//	Import	axios

const	axios	=	require('axios')

app.get('/coins',	function(req,	res)	{

		//	Define	base	url

		let	apiUrl	=	`https://api.coinlore.com/api/tickers?

start=0&limit=10`

		//	Check	if	there	are	any	query	string	parameters

		//	If	so,	reset	the	base	url	to	include	them

		if	(req.apiGateway	&&	

req.apiGateway.event.queryStringParameters)	{

			const	{	start	=	0,	limit	=	10	}	=	

req.apiGateway.event.queryStringParameters

			apiUrl	=	`https://api.coinlore.com/api/tickers/?

start=${start}&limit=${limit}`

		}

		//	Call	API	and	return	response

		axios.get(apiUrl)

				.then(response	=>	{

						res.json({		coins:	response.data.data	})

				})

				.catch(err	=>	res.json({	error:	err	}))

})

In	the	preceding	function,	we’ve	imported	the	Axios	library	and	then	used
it	to	make	an	API	call	to	the	CoinLore	API.	In	the	API	call,	you	can	pass



in	a	start	and	limit	parameter	to	the	request	to	define	the	number	of
coins	to	return,	as	well	as	to	define	the	starting	point.

In	the	req	parameter,	there	is	an	apiGateway	property	that	holds	the
event	and	the	context	variables.	In	the	function	just	defined,	there	is	a
check	to	see	if	this	event	exists	as	well	as	the
queryStringParameters	property	on	the	event.	If	the
queryStringParameters	property	exists,	we	use	those	values	to
update	the	base	URL	with	the	parameters.	Using
queryStringParameters,	the	user	can	specify	the	start	and
limit	values	when	querying	the	CoinLore	API.

Once	the	function	is	updated,	you	can	deploy	the	updates	by	running	the
push	command	in	your	terminal:

~	amplify	push

Current	Environment:	local

|	Category	|	Resource	name		|	Operation	|	Provider	plugin			|

|	--------	|	--------------	|	---------	|	-----------------	|

|	Function	|	cryptofunction	|	Update				|	awscloudformation	|

|	Api						|	cryptoapi						|	No	Change	|	awscloudformation	|

?	Are	you	sure	you	want	to	continue?	Y

Updating	the	Client	App

Now	that	you	have	updated	the	function,	let’s	update	the	React	app	to	give
the	user	the	option	to	specify	the	limit	and	start	parameters.

To	do	so,	you’ll	need	to	add	fields	for	user	input	and	give	the	user	a	button
to	trigger	a	new	API	request.

Update	src/App.js	with	the	following	changes:



//	Create	additional	state	to	hold	user	input	for	limit	and	

start	properties

const	[input,	updateInput]	=	useState({	limit:	5,	start:	0	})

//	Create	a	new	function	to	allow	users	to	update	the	input	

values

function	updateInputValues(type,	value)	{

		updateInput({	...input,	[type]:	value	})

}

//	Update	fetchCoins	function	to	use	limit	and	start	properties

async	function	fetchCoins()	{

		const	{	limit,	start	}	=	input

		const	data	=	await	API.get('cryptoapi',	`/coins?

limit=${limit}&start=${start}`)

		updateCoins(data.coins)

}

//	Add	input	fields	to	the	UI	for	user	input

<input

		onChange={e	=>	updateInputValues('limit',	e.target.value)}

		placeholder="limit"

/>

<input

		placeholder="start"

		onChange={e	=>	updateInputValues('start',	e.target.value)}

/>

//	Add	button	to	the	UI	to	give	user	the	option	to	call	the	API

<button	onClick={fetchCoins}>Fetch	Coins</button>

Next,	run	the	app:

~	npm	start

Summary
Congratulations,	you’ve	deployed	your	first	serverless	API!

Here	are	a	few	things	to	keep	in	mind	from	this	chapter:

Lambda	functions	can	be	triggered	from	a	variety	of	events.	In
this	chapter,	we	triggered	the	function	using	an	API	call	from	API



Gateway.

Lambda	functions	can	be	created	from	the	Amplify	CLI	by	using
the	command	amplify	add	function,	and	APIs	can	be
created	using	the	command	amplify	add	api.

A	single	API	Gateway	endpoint	can	be	configured	to	work	with
multiple	Lambda	functions.	In	the	example	in	this	chapter,	we
have	only	connected	it	to	a	single	function.

Lambda	functions	are	essentially	self-contained	Node.js
applications.	In	the	example	for	this	chapter,	we	chose	to	run	an
express	application	in	order	to	handle	REST	methods	like	get,
post,	and	delete,	though	we	have	only	worked	with	a	get
call	at	this	point.

The	API	category	from	the	Amplify	client	library	can	be	used
with	both	GraphQL	as	well	as	REST	APIs.



Chapter	3.	Creating	Your	First
App

In	Chapter	2,	you	created	a	basic	API	layer	using	a	combination	of	API
Gateway	and	serverless	functions.	This	combination	is	very	powerful,	but
you	have	not	yet	interacted	with	a	real	database.

In	this	chapter,	you	will	be	creating	a	GraphQL	API	that	interacts	with	a
DynamoDB	NoSQL	database	to	perform	CRUD+L	(create,	read,	update,
delete,	and	list)	operations.	You’ll	learn	what	GraphQL	is,	why	developers
are	adopting	it,	and	how	it	works.

We	will	be	building	a	notes	app	that	will	allow	users	to	create,	update,	and
delete	notes.	It	will	also	have	GraphQL	subscriptions	enabled	in	order	to
see	updates	in	real	time.	If	another	user	is	interacting	with	the	app	and
they	create	a	new	note,	our	app	will	update	with	the	new	values	in	real
time.

Introduction	to	GraphQL
GraphQL	is	an	API	implementation	that	is	an	alternative	to	REST.	Let’s
have	a	look	at	what	GraphQL	is,	what	a	GraphQL	API	consists	of,	and
how	GraphQL	works.

What	Is	GraphQL?

GraphQL	is	an	API	specification.	It	is	a	query	language	for	APIs	and	a



runtime	for	fulfilling	those	queries	with	your	data.	It	is,	and	can	be	used
as,	a	replacement	for	REST	and	has	some	similarities	to	REST.

GraphQL	was	introduced	by	Facebook	in	2015,	though	it	had	been	used
internally	since	2012.	GraphQL	allows	clients	to	define	the	structure	of	the
data	that	is	required	from	an	API	call	so	that	they	can	know	exactly	what
data	structure	is	going	to	be	returned	from	the	server.	Requesting	data	in
this	way	enables	a	much	more	efficient	way	for	client-side	applications	to
interact	with	backend	APIs	and	services,	reducing	the	amount	of	under-
fetching	of	data,	preventing	the	over-fetching	of	data,	and	preventing	type
errors.

What	Makes	Up	a	GraphQL	API?

A	GraphQL	API	consists	of	three	main	parts:	schema,	resolvers,	and	data
sources,	as	illustrated	in	Figure	3-1.

Figure	3-1.	GraphQL	API	Design

The	schema,	written	in	GraphQL	Schema	Definition	Language	(SDL),
defines	the	data	model	(types)	and	operations	that	can	be	executed	against
the	API.	The	schema	consists	of	base	types	(data	models)	and	GraphQL
operations	like	queries	for	fetching	data;	mutations	for	creating,	updating,
and	deleting	data;	and	subscriptions	for	subscribing	to	changes	in	data	in

https://oreil.ly/KtnOq


real	time.

Here	is	an	example	of	a	GraphQL	schema:

#	base	type

type	Todo	{

		id:	ID

		name:	String

		completed:	Boolean

}

#	Query	definitions

type	Query	{

		getTodo(id:	ID):	Todo

		listTodos:	[Todo]

}

#	Mutation	definitions

type	Mutation	{

		createTodo(input:	Todo):	Todo

}

#	Subscription	definitions

type	Subscription	{

		onCreateTodo:	Todo

}

Once	the	schema	has	been	created,	you	can	begin	writing	resolvers	for	the
GraphQL	operations	defined	in	the	schema	(query,	mutation,
subscription).	GraphQL	resolvers	tell	the	GraphQL	operations	what	to	do
when	being	executed	and	will	typically	interact	with	some	data	source	or
another	API,	as	shown	in	Figure	3-2.



Figure	3-2.	How	GraphQL	works

GraphQL	Operations

GraphQL	operations	are	how	you	interact	with	the	API	data	sources.
GraphQL	operations	can	be	similarly	mapped	to	HTTP	methods	for
RESTful	APIs:

GET	->	Query

PUT	->	Mutation

POST	->	Mutation

DELETE	->	Mutation

PATCH	->	Mutation

A	GraphQL	request	operation	looks	similar	to	a	JavaScript	object	with
only	the	keys	and	no	values.	The	keys	and	values	are	returned	in	the



GraphQL	operation	response.	Here’s	an	example	of	a	typical	GraphQL
query	fetching	an	array	of	items:

query	{

		listTodos	{

				id

				name

				completed

		}

}

This	request	would	return	the	following	response:

{

		"data":	{

				"listTodos":	[

						{	"id":	"0",	"name":	"buy	groceries",	"completed":	false	

},

						{	"id":	"1",	"name":	"exercise",	"completed":	true	}

				]

		}

}

You	can	also	pass	arguments	into	a	GraphQL	operation.	The	following
operation	is	a	query	for	a	Todo,	passing	in	the	ID	of	the	Todo	we’d	like
to	fetch:

query	{

		getTodo(id:	"0")	{

				name

				completed

		}

}

This	request	would	return	the	following	response:

{

		"data":	{

				"getTodo":	{

						"name":	"buy	groceries"

						"completed":	false

				}



		}

}

Though	there	are	many	ways	to	implement	a	GraphQL	server,	in	this	book
we	will	be	using	AWS	AppSync.	AppSync	is	a	managed	service	that
allows	us	to	deploy	a	GraphQL	API,	resolvers,	and	data	sources	quickly
and	easily	using	the	Amplify	CLI.

Creating	the	GraphQL	API
Now	that	you	have	a	basic	understanding	of	what	GraphQL	is,	let’s	go
ahead	and	start	using	it	to	build	the	Notes	app.

The	first	thing	you	need	to	do	is	create	a	new	React	application	and	install
the	necessary	dependencies.	This	app	will	be	using	the	AWS	Amplify
library	to	interact	with	the	API,	uuid	for	creating	unique	ids,	and	the
Ant	Design	library	for	styling:

~	npx	create-react-app	notesapp

~	cd	notesapp

~	npm	install	aws-amplify	antd	uuid

Now,	within	the	root	of	the	new	app,	you	can	create	the	Amplify	project:

~	amplify	init

?	Enter	a	name	for	the	project:	notesapp

?	Enter	a	name	for	the	environment:	dev

?	Choose	your	default	editor:	<your	editor	of	choice>

?	Choose	the	type	of	app	that	you're	building:	javascript

?	What	javascript	framework	are	you	using:	react

?	Source	Directory	Path:	src

?	Distribution	Directory	Path:	build

?	Build	Command:	npm	run-script	build

?	Start	Command:	npm	run-script	start

?	Do	you	want	to	use	an	AWS	profile?	Y



With	the	Amplify	project	initialized,	we	can	then	add	the	GraphQL	API:

~	amplify	add	api

?	Please	select	from	one	of	the	below	mentioned	services:	

GraphQL

?	Provide	API	name:	notesapi

?	Choose	the	default	authorization	type	for	the	API:	API	Key

?	Enter	a	description	for	the	API	key:	public	(or	some	

description)

?	After	how	many	days	from	now	the	API	key	should	expire:	365	

(or	your

		preferred	expiration)

?	Do	you	want	to	configure	advanced	settings	for	the	GraphQL	

API:	N

?	Do	you	have	an	annotated	GraphQL	schema?	N

?	Do	you	want	a	guided	schema	creation?	Y

?	What	best	describes	your	project:	Single	object	with	fields

?	Do	you	want	to	edit	the	schema	now?	Y

Next,	open	the	base	GraphQL	schema	(generated	by	the	CLI),	located	at
notesapp/amplify/backend/api/notesapi/schema.graphql,	in	your	text
editor.	Update	the	schema	to	the	following,	and	save	it:

type	Note	@model	{

		id:	ID!

		clientId:	ID

		name:	String!

		description:	String

		completed:	Boolean

}

This	schema	has	a	main	Note	type	containing	five	fields.	A	field	can	be
either	nullable	(not	required)	or	non-nullable	(required).	A	non-nullable
field	is	specified	with	a	!	character.

The	Note	type	in	this	schema	is	annotated	with	an	@model	directive.
This	directive	is	not	part	of	the	GraphQL	SDL;	instead,	it	is	part	of	the
AWS	Amplify	GraphQL	Transform	library.



The	GraphQL	Transform	library	allows	you	to	annotate	a	GraphQL
schema	with	different	directives	like	@model,	@connection,	@auth,
and	others.

The	@model	directive	we	used	in	this	schema	will	transform	the	base
Note	type	into	an	expanded	AWS	AppSync	GraphQL	API	complete	with:

1.	 Additional	schema	definitions	for	queries	and	mutations
(Create,	Read,	Update,	Delete,	and	List	operations)

2.	 Additional	schema	definitions	for	GraphQL	subscriptions

3.	 DynamoDB	database

4.	 Resolver	code	for	all	GraphQL	operations	mapped	to	DynamoDB
database

To	deploy	the	API,	you	can	run	the	push	command:

~	amplify	push

?	Are	you	sure	you	want	to	continue?	Yes

?	Do	you	want	to	generate	code	for	your	newly	created	GraphQL	

API:	Yes

?	Choose	the	code	generation	language	target:	javascript

?	Enter	the	file	name	pattern	of	graphql	queries,	mutations	and

		subscriptions:	src/graphql/**/*.js

?	Do	you	want	to	generate/update	all	possible	GraphQL	operations	

-

		queries,	mutations	and	subscriptions:	Y

?	Enter	maximum	statement	depth	[increase	from	default	if	your	

schema	is

		deeply	nested]:	2

Once	the	deployment	has	completed,	the	API	and	database	have
successfully	been	created	in	your	account.	Next,	let’s	open	the	newly
created	AppSync	API	in	the	AWS	Console	and	test	out	a	few	GraphQL
operations.



Viewing	and	Interacting	with	the	GraphQL
API
To	open	the	API	in	the	AWS	Console	at	any	time,	you	can	use	the
following	command:

-	amplify	console	api

>	Choose	GraphQL

Once	you’ve	opened	the	AppSync	console,	click	Queries	in	the	lefthand
menu	to	open	the	query	editor.	Here,	you	can	test	out	GraphQL	queries,
mutations,	and	subscriptions	using	your	API.

The	first	operation	we’ll	try	out	is	a	mutation	to	create	a	new	note.	In	the
query	editor,	execute	the	following	mutation	(see	Figure	3-3):

mutation	createNote	{

		createNote(input:	{

				name:	"Book	flight"

				description:	"Flying	to	Paris	on	June	1	returning	June	10"

				completed:	false

		})	{

				id	name	description	completed

		}

}



Figure	3-3.	GraphQL	mutation

Now	that	you’ve	created	an	item,	you	can	try	querying	for	it.	Let’s	try	to
query	for	all	of	the	notes	in	the	app:

query	listNotes	{

		listNotes	{

				items	{



						id

						name

						description

						completed

				}

		}

}

You	can	also	try	querying	for	a	single	note	using	the	ID	of	one	of	the
notes:

query	getNote	{

		getNote(id:	"<NOTE_ID>")	{

				id

				name

				description

				completed

		}

}

Now	that	we	know	the	GraphQL	API	is	deployed	and	functioning
properly,	let’s	start	writing	some	frontend	code.

Building	the	React	Application
The	first	thing	you	will	need	to	do	is	configure	the	React	application	to
recognize	the	Amplify	resources	located	at	src/aws-exports.js.	To	do	so,
open	src/index.js	and	add	the	following	below	the	last	import:

import	Amplify	from	'aws-amplify'

import	config	from	'./aws-exports'

Amplify.configure(config)

Listing	Notes	(GraphQL	Query)

Now	that	the	application	has	been	configured,	you	can	begin	making	calls
against	the	GraphQL	API.	The	first	operation	we	will	be	implementing
will	be	a	query	to	list	all	of	the	notes.



The	query	will	return	an	array	and	we	will	map	over	all	of	the	items	in	the
array,	showing	the	note	name,	description,	and	whether	or	not	it	is
completed.

In	src/App.js,	first	import	the	following	at	the	top	of	the	file:

import	React,	{useEffect,	useReducer}	from	'react'

import	{	API	}	from	'aws-amplify'

import	{	List	}	from	'antd'

import	'antd/dist/antd.css'

import	{	listNotes	}	from	'./graphql/queries'

Let’s	take	a	look	at	some	of	the	terms	used	in	the	preceding:

useEffect	and	useReducer

React	hooks

API

This	is	the	GraphQL	client	that	we	will	be	using	to	interact	with	the
AppSync	endpoint	(similar	to	fetch	or	axios)

List

UI	component	from	the	Ant	Design	library	to	render	a	list

listNotes

The	GraphQL	query	operation	for	fetching	an	array	of	notes

Next,	we	will	need	to	create	a	variable	to	hold	our	initial	application	state.
Because	our	application	will	be	holding	and	working	with	multiple	state
variables,	we	will	use	the	useReducer	hook	from	React	to	manage
state.

useReducer	has	the	following	API:



const	[state,	dispatch]	=	useReducer(reducer	<function>,	

initialState	<any>)

useReducer	accepts	a	reducer	function	of	type	(state,	action)
=>	newState	and	initialState	as	arguments:

/*	Example	of	some	basic	state	*/

const	initialState	=	{	notes:	[]	}

/*	Example	of	a	basic	reducer	*/

function	reducer(state,	action)	{

		switch(action.type)	{

				case	'SET_NOTES':

						return	{	...state,	notes:	action.notes	}

				default:

						return	state

		}

}

/*	Implementing	useReducer	*/

const	[state,	dispatch]	=	useReducer(reducer:	<function>,	

initialState:	<any>)

/*	Sending	an	update	to	the	reducer	*/

const	notes	=	[{	name:	'Hello	World'	}]

dispatch({	type:	'SET_NOTES',	notes:	notes	})

/*	Using	the	state	in	your	app	*/

{

		state.notes.map(note	=>	<p>{note.name}</p>)

}

When	invoked,	the	useReducer	hook	returns	an	array	containing	two
items:

The	application	state

A	dispatch	function	(this	function	allows	you	to	update	the
application	state)

The	initial	state	of	our	Notes	application	will	hold	an	array	for	the	notes,
form	values,	error,	and	loading	state.



In	src/App.js,	add	the	following	initialState	object	after	the	last
import:

const	initialState	=	{

		notes:	[],

		loading:	true,

		error:	false,

		form:	{	name:	'',	description:	''	}

}

Then	create	the	reducer.	For	now,	the	reducer	will	only	have	cases	to	either
set	the	notes	array	or	set	an	error	state:

function	reducer(state,	action)	{

		switch(action.type)	{

				case	'SET_NOTES':

						return	{	...state,	notes:	action.notes,	loading:	false	}

				case	'ERROR':

						return	{	...state,	loading:	false,	error:	true	}

				default:

						return	state

		}

}

Next,	update	the	main	App	function	to	create	the	state	and	dispatch
variables	by	calling	useReducer	and	passing	in	the	reducer	and
initialState:

export	default	function	App()	{

		const	[state,	dispatch]	=	useReducer(reducer,	initialState)

}

To	fetch	the	notes,	create	a	fetchNotes	function	(in	the	main	App
function)	that	will	call	the	AppSync	API	and	set	the	notes	array	once	the
API	call	is	successful:

async	function	fetchNotes()	{

		try	{

				const	notesData	=	await	API.graphql({

						query:	listNotes



				})

				dispatch({	type:	'SET_NOTES',	notes:	

notesData.data.listNotes.items	})

		}	catch	(err)	{

				console.log('error:	',	err)

				dispatch({	type:	'ERROR'	})

		}

}

Now,	invoke	the	fetchNotes	function	by	implementing	the
useEffect	hook	(in	the	main	App	function):

useEffect(()	=>	{

		fetchNotes()

},	[])

NOTE
useEffect	is	similar	to	componentDidMount.	useEffect	will	run	after	the
initial	render	of	the	component	is	committed	to	the	screen.	The	second	argument	to
useEffect	is	an	array	of	values,	the	effect	of	which	depends	on	whether	it	is	called
again	during	a	re-render.	If	the	array	is	empty,	it	will	not	be	called	on	additional
renders.	If	the	array	contains	values	and	those	values	change,	the	component	will	re-
render.

The	next	thing	you	need	to	do	is	return	the	main	UI	for	the	component.	In
the	main	App	function,	add	the	following:

return	(

		<div	style={styles.container}>

				<List

						loading={state.loading}

						dataSource={state.notes}

						renderItem={renderItem}

				/>

		</div>

)

Here	we	are	using	the	List	component	from	Ant	Design.	This



component	will	map	over	an	array	(dataSource)	and	return	an	item	for
each	item	in	the	array	by	calling	the	renderItem	function.	Next,	define
renderItem	(in	the	main	App	function):

function	renderItem(item)	{

		return	(

				<List.Item	style={styles.item}>

						<List.Item.Meta

								title={item.name}

								description={item.description}

						/>

				</List.Item>

		)

}

Finally,	create	the	styles	for	the	components	we	will	be	using	for	this	app:

const	styles	=	{

		container:	{padding:	20},

		input:	{marginBottom:	10},

		item:	{	textAlign:	'left'	},

		p:	{	color:	'#1890ff'	}

}

Now	we	are	ready	to	run	the	app!	In	the	terminal,	run	the	start
command:

~	npm	start

When	the	app	loads,	you	should	see	the	current	list	of	notes	rendered	to
your	screen,	as	illustrated	in	Figure	3-4.



Figure	3-4.	Notes	list

Creating	Notes	(GraphQL	Mutation)

Now	that	you	know	how	to	query	for	a	list	of	notes,	let’s	take	a	look	at
how	to	create	a	new	note.	To	do	so,	you’ll	need	the	following:

1.	 A	form	to	create	a	new	note

2.	 A	function	to	update	the	state	as	the	user	types	into	the	form

3.	 A	function	to	add	the	new	note	to	the	UI	and	send	an	API	call	to
create	a	new	note

First,	import	the	UUID	library	so	you	can	create	a	unique	identifier	for	the



client.	We	do	this	now	so	that	later	on	when	we	implement	subscriptions
we	can	identify	the	client	that	created	the	note.	We	will	also	import	the
Input	and	Button	components	from	Ant	Design:

import	{	v4	as	uuid	}	from	'uuid'

import	{	List,	Input,	Button	}	from	'antd'

Next,	you	will	need	to	import	the	createNote	mutation	definition:

import	{	createNote	as	CreateNote	}	from	'./graphql/mutations'

Then,	create	a	new	CLIENT_ID	variable	below	the	last	import:

const	CLIENT_ID	=	uuid()

Update	the	switch	statement	in	the	reducer	to	add	three	new	cases.	We	will
need	a	new	case	for	the	following	three	actions:

1.	 Adding	a	new	note	to	the	local	state

2.	 Resetting	the	form	state	to	clear	out	the	form

3.	 Updating	the	form	state	when	the	user	types

case	'ADD_NOTE':

		return	{	...state,	notes:	[action.note,	...state.notes]}

case	'RESET_FORM':

		return	{	...state,	form:	initialState.form	}

case	'SET_INPUT':

		return	{	...state,	form:	{	...state.form,	[action.name]:	

action.value	}	}

Next,	create	the	createNote	function	in	the	main	App	function:

async	function	createNote()	{

		const	{	form	}	=	state

		if	(!form.name	||	!form.description)	{

					return	alert('please	enter	a	name	and	description')

		}



		const	note	=	{	...form,	clientId:	CLIENT_ID,	completed:	false,	

id:	uuid()	}

		dispatch({	type:	'ADD_NOTE',	note	})

		dispatch({	type:	'RESET_FORM'	})

		try	{

				await	API.graphql({

						query:	CreateNote,

						variables:	{	input:	note	}

				})

				console.log('successfully	created	note!')

		}	catch	(err)	{

				console.log("error:	",	err)

		}

}

In	this	function,	we	are	updating	the	local	state	before	the	API	call	is
successful.	This	is	known	as	an	optimistic	response.	It	is	done	because	we
want	the	UI	to	be	fast	and	to	update	as	soon	as	the	user	adds	a	new	note.	If
the	API	call	fails,	you	can	then	implement	some	functionality	in	the
catch	block	to	notify	the	user	of	the	error	if	you	would	like.

Now,	create	an	onChange	handler	in	the	main	App	function	to	update
the	form	state	when	the	user	interacts	with	an	input:

function	onChange(e)	{

		dispatch({	type:	'SET_INPUT',	name:	e.target.name,	value:	

e.target.value	})

}

Finally,	we	will	update	the	UI	to	add	the	form	components.	Before	the
List	component,	add	the	following	two	inputs	and	button:

<Input

		onChange={onChange}

		value={state.form.name}

		placeholder="Note	Name"

		name='name'

		style={styles.input}

/>

<Input

		onChange={onChange}



		value={state.form.description}

		placeholder="Note	description"

		name='description'

		style={styles.input}

/>

<Button

		onClick={createNote}

		type="primary"

>Create	Note</Button>

Now,	we	should	be	able	to	create	new	notes	using	the	form,	as	shown	in
Figure	3-5.





Figure	3-5.	Creating	a	note

Deleting	Notes	(GraphQL	Mutation)

Next,	let’s	take	a	look	at	how	to	delete	a	note.	To	do	so,	we’ll	need	the
following:

1.	 A	deleteNote	function	to	delete	the	note	both	from	the	UI	and
from	the	GraphQL	API

2.	 A	button	in	each	note	to	invoke	the	deleteNote	function

First,	import	the	deleteNote	mutation:

import	{

		createNote	as	CreateNote,

		deleteNote	as	DeleteNote

}	from	'./graphql/mutations'

Then,	create	a	deleteNote	function	in	the	main	App	function:

async	function	deleteNote({	id	})	{

		const	index	=	state.notes.findIndex(n	=>	n.id	===	id)

		const	notes	=	[

				...state.notes.slice(0,	index),

				...state.notes.slice(index	+	1)];

		dispatch({	type:	'SET_NOTES',	notes	})

		try	{

				await	API.graphql({

						query:	DeleteNote,

						variables:	{	input:	{	id	}	}

				})

				console.log('successfully	deleted	note!')

				}	catch	(err)	{

						console.log({	err	})

		}

}

In	this	function,	we	are	finding	the	index	of	the	note	and	creating	a	new
notes	array	without	the	deleted	note.	We	then	dispatch	the	SET_NOTES
action	passing	in	the	new	notes	array	to	update	the	local	state	and	show	an



optimistic	response.	Next,	we	call	the	GraphQL	API	to	delete	the	note	in
the	AppSync	API.

Now,	update	the	List.Item	component	in	the	renderItem	function
to	add	a	delete	button	to	the	actions	prop	that	will	call	the
deleteNote	function,	passing	in	the	item:

<List.Item

		style={styles.item}

		actions={[

				<p	style={styles.p}	onClick={()	=>	

deleteNote(item)}>Delete</p>

		]}

>

		<List.Item.Meta

			title={item.name}

			description={item.description}

		/>

</List.Item>

Now,	we	should	be	able	to	delete	notes	(see	Figure	3-6).



Figure	3-6.	Deleting	a	note

Updating	Notes	(GraphQL	Mutation)

The	next	piece	of	functionality	we	want	to	add	is	the	ability	to	update	a
note	to	be	completed.	To	do	so,	you’ll	need	the	following:



1.	 An	updateNote	function	to	update	the	note	in	the	UI	and	in	the
GraphQL	API

2.	 A	button	in	each	note	to	invoke	the	updateNote	function

First,	import	the	updateNote	mutation:

import	{

		updateNote	as	UpdateNote,

		createNote	as	CreateNote,

		deleteNote	as	DeleteNote

}	from	'./graphql/mutations'

Next,	create	an	updateNote	function	in	the	main	App	function:

async	function	updateNote(note)	{

		const	index	=	state.notes.findIndex(n	=>	n.id	===	note.id)

		const	notes	=	[...state.notes]

		notes[index].completed	=	!note.completed

		dispatch({	type:	'SET_NOTES',	notes})

		try	{

				await	API.graphql({

						query:	UpdateNote,

						variables:	{	input:	{	id:	note.id,	completed:	

notes[index].completed	}	}

				})

				console.log('note	successfully	updated!')

		}	catch	(err)	{

				console.log('error:	',	err)

		}

}

In	this	function,	we	are	first	finding	the	index	of	the	selected	note,	then
creating	a	copy	of	the	notes	array.	We	then	update	the	completed	value	of
the	selected	note	to	be	the	opposite	of	what	it	currently	is.	We	then	update
the	notes	array	with	the	new	version	of	the	note,	set	the	notes	array	in	the
local	state,	and	call	the	GraphQL	API,	passing	in	the	note	that	needs	to	be
updated	in	the	API.

Finally,	update	the	List.Item	component	to	add	an	update	button	that



will	call	the	updateNote	function,	passing	in	the	item.	This	component
will	render	either	completed	or	mark	complete	depending	on	the
value	of	the	completed	Boolean	of	the	item	(based	on	whether
completed	is	true	or	false):

<List.Item

		style={styles.item}

		actions={[

				<p	style={styles.p}	onClick={()	=>	

deleteNote(item)}>Delete</p>,

				<p	style={styles.p}	onClick={()	=>	updateNote(item)}>

						{item.completed	?	'completed'	:	'mark	completed'}

				</p>

		]}

>

Now,	we	should	be	able	to	update	notes	to	be	either	completed	or	not
completed	(see	Figure	3-7).





Figure	3-7.	Updating	a	note

Real-Time	Data	(GraphQL	Subscriptions)

The	last	piece	of	functionality	we	will	implement	is	the	ability	to
subscribe	to	updates	in	real	time.	The	update	that	we’d	like	to	subscribe	to
is	when	a	new	note	has	been	added.	When	this	happens,	the	functionality
we’d	like	to	implement	is	to	have	our	application	receive	that	new	note,
update	the	notes	array	with	the	new	note,	and	render	the	updated	notes
array	to	our	screen.

To	do	this,	you	will	be	implementing	a	GraphQL	subscription.	With
GraphQL	subscriptions,	you	can	subscribe	to	different	events.	These
events	are	usually	some	type	of	mutation	(on	create,	on	update,	on	delete).
When	one	of	these	events	happens,	the	data	from	the	event	gets	sent	to	the
client	that	initialized	the	subscription.	It	is	then	up	to	you	to	handle	the
data	that	comes	in	on	the	client.

To	make	this	work,	you’ll	only	need	to	initialize	the	subscription	in	the
useEffect	hook	and	dispatch	the	ADD_NOTE	type	along	with	the	note
data	when	a	subscription	is	fired.

First,	import	the	onCreateNote	subscription:

import	{	onCreateNote	}	from	'./graphql/subscriptions'

Next,	update	the	useEffect	hook	with	the	following	code:

useEffect(()	=>	{

		fetchNotes()

		const	subscription	=	API.graphql({

				query:	onCreateNote

		})

				.subscribe({



						next:	noteData	=>	{

								const	note	=	noteData.value.data.onCreateNote

								if	(CLIENT_ID	===	note.clientId)	return

								dispatch({	type:	'ADD_NOTE',	note	})

						}

				})

				return	()	=>	subscription.unsubscribe()

},	[])

In	this	subscription,	we	are	subscribing	to	the	onCreateNote	event.
When	a	new	note	is	created,	this	event	gets	triggered	and	the	next
function	is	invoked,	passing	in	the	note	data	as	the	parameter.

We	take	the	note	data	and	check	to	see	if	our	client	is	the	application	that
created	the	note.	If	our	client	created	the	note,	we	return	without	going	any
further.	If	we	are	not	the	client	that	created	the	note,	we	dispatch	the
ADD_NOTE	action,	passing	in	the	note	data	from	the	subscription.

Summary
Congratulations,	you’ve	deployed	your	first	serverless	GraphQL
application!

Here	are	a	few	things	to	keep	in	mind	from	this	chapter:

The	useEffect	hook	is	similar	to	componentDidMount
from	the	React	lifecycle	methods	in	that	it	runs	after	the
component	first	renders.

The	useReducer	hook	allows	you	to	manage	application	state
and	is	preferable	to	useState	when	having	more	complex
application	logic.

GraphQL	queries	are	used	for	fetching	data	in	a	GraphQL	API.

GraphQL	mutations	are	used	for	creating,	updating,	or	deleting



data	in	a	GraphQL	API.

You	can	subscribe	to	API	real-time	events	in	a	GraphQL	API	by
using	GraphQL	subscriptions.



Chapter	4.	Introduction	to
Authentication

Authentication	and	identity	are	integral	parts	of	almost	any	application.
Knowing	who	the	user	is,	what	permissions	they	have,	whether	or	not	they
are	signed	in,	and	having	a	unique	identifier	for	the	user	allow	your
application	to	render	the	correct	views	and	return	the	proper	data	for	the
currently	signed-in	user.

Most	applications	require	mechanisms	to	handle	user	sign-up,	user	sign-in,
password	encryption,	and	updating,	as	well	as	countless	other	tasks	around
identity	management.	Modern	applications	often	call	for	things	like	open
authentication	(OAUTH),	multifactor	authentication	(MFA),	and	time-
based	on	time	passwords	(TOTP).

In	the	past,	developers	had	to	hand	roll	all	of	this	authentication
functionality	from	scratch.	This	task	alone	could	take	a	team	of	developers
weeks,	or	even	months,	to	get	right	and	to	do	so	securely.	Today	there	are
fully	managed	authentication	services	like	Auth0,	Okta,	and	Amazon
Cognito	that	handle	all	of	this	for	us.

In	this	chapter,	you	will	learn	how	to	properly	and	securely	implement
authentication	in	a	React	application	using	Amazon	Cognito	with	AWS
Amplify.

The	app	that	you	will	be	building	is	a	basic	application	that	requires
authentication	in	order	to	be	viewed	and	also	has	a	profile	page	showing



profile	information	about	the	signed-in	user.	If	the	user	is	signed	in,	they
can	navigate	between	a	public	route,	a	profile	route	with	an	authentication
form,	and	a	protected	route	viewable	only	to	signed-in	users.

If	they	are	not	signed	in,	they	can	only	view	the	public	route	and
authentication	form	on	the	profile	route.	If	the	user	tries	to	access	a
protected	route	when	they	are	not	signed	in,	we	want	to	redirect	them	to
the	authentication	form	so	that	they	can	sign	in	and	then	access	the	route
once	authenticated.

This	app	will	also	persist	user	state,	so	if	they	refresh	the	app	or	navigate
away	from	it	and	come	back,	they	will	stay	signed	in.

Introduction	to	Amazon	Cognito
Amazon	Cognito	is	a	fully	managed	identity	service	from	AWS.	Cognito
allows	for	simple	and	secure	user	sign-up,	sign-in,	access	control,	and
user	identity	management.	Cognito	scales	to	millions	of	users	and	also
supports	sign-in	with	social	identity	providers,	such	as	Facebook,	Google,
and	Amazon.	It	is	also	free	for	the	first	50,000	users	of	any	app.

How	Amazon	Cognito	Works

Cognito	has	two	main	pieces:	user	pools	and	identity	pools:

User	pools

These	provide	a	secure	user	directory	that	stores	all	your	users	and
scales	to	hundreds	of	millions	of	users.	It	is	a	fully	managed	service.
As	a	serverless	technology,	user	pools	are	easy	to	set	up	without
having	to	worry	about	standing	up	any	infrastructure.	User	pools	are
what	manage	all	of	the	users	that	sign	up	and	sign	in	to	the	account,



and	are	what	we	will	be	focusing	on	in	this	chapter.

Identity	pools

These	allow	you	to	authorize	users	that	are	signed	in	to	your
application	to	access	various	other	AWS	services.	Say	you	wanted	to
allow	a	user	to	have	access	to	a	Lambda	function	so	that	they	could
fetch	data	from	another	API;	you	could	specify	that	while	creating	an
identity	pool.	Where	user	pools	come	in	is	that	the	source	of	these
identities	could	be	a	Cognito	user	pool	or	even	Facebook	or	Google.

Cognito	user	pools	allow	your	application	to	invoke	various	methods
against	the	service	to	manage	all	aspects	of	user	identity,	including	such
items	as:

Signing	up	a	user

Signing	in	a	user

Signing	out	a	user

Changing	a	user’s	password

Resetting	a	user’s	password

Confirming	an	MFA	code

Amazon	Cognito	Integration	with	AWS	Amplify

AWS	Amplify	has	support	for	Amazon	Cognito	in	various	ways.	First	of
all,	you	can	create	and	configure	Amazon	Cognito	services	directly	from
the	Amplify	CLI.	Once	you’ve	created	the	authentication	service	via	the
CLI	you	can	then	call	various	methods	(like	signUp,	signIn,	and
signOut)	from	your	JavaScript	application	using	the	Amplify	JavaScript
client	library.

Amplify	also	has	preconfigured	UI	components	that	allow	you	to	scaffold



out	entire	authentication	flows	in	just	a	couple	of	lines	of	code	for
frameworks	like	React,	React	Native,	Vue,	and	Angular.

In	this	chapter,	you’ll	be	using	a	combination	of	the	Amplify	CLI,
Amplify	JavaScript	client,	and	Amplify	React	UI	components	to	build	an
application	that	demonstrates	routing,	authentication,	and	protected
routes.	You’ll	also	use	React	Router	for	routing	and	Ant	Design	to	give	the
application	some	basic	styling	(see	Figure	4-1).

Figure	4-1.	React	with	routing	and	authentication



Creating	the	React	App	and	Adding	Amplify
The	first	thing	you’ll	do	to	get	started	is	create	the	React	application,
install	the	necessary	dependencies,	and	create	the	Amplify	project.

To	begin,	open	your	terminal	and	create	a	new	React	application:

~	npx	create-react-app	basic-authentication

~	cd	basic-authentication

Then	install	the	AWS	Amplify,	AWS	Amplify	React,	React	Router,	and
Ant	Design	libraries:

~	npm	install	aws-amplify	@aws-amplify/ui-react	antd	react-

router-dom

Initialize	a	new	Amplify	project:

~	amplify	init

#	Follow	the	steps	to	give	the	project	a	name,	environment	name,	

and	set

		the	default	text	editor.

#	Accept	defaults	for	everything	else	and	choose	your	AWS	

Profile.

With	the	Amplify	project	now	initialized,	we	can	create	the	authentication
service.	To	do	so,	run	the	following	command:

~	amplify	add	auth

?	Do	you	want	to	use	the	default	authentication	and	security

		configuration?	Default	configuration

?	How	do	you	want	users	to	be	able	to	sign	in?	Username

?	Do	you	want	to	configure	advanced	settings?	No,	I	am	done.

Now	the	authentication	service	has	been	configured	and	you	can	deploy	it
using	the	amplify	push	command:



~	amplify	push

?	Are	you	sure	you	want	to	continue?	Yes

The	authentication	service	has	been	deployed,	so	let’s	start	testing	it	out.

Client	Authentication	Overview

Using	Amplify,	there	are	two	main	ways	to	implement	authentication	on
the	client	now	that	the	service	is	up	and	running:

Auth	class

The	Amplify	client	library	exposes	an	Auth	class	with	over	30
different	methods	that	allow	you	to	handle	everything	associated	with
user	management.	Some	examples	of	the	methods	available	are
Auth.signUp,	Auth.signIn,	and	Auth.signOut.

Using	this	class,	you	can	create	a	completely	custom	authentication
flow	based	on	your	application’s	requirements.	To	do	so,	you	have	to
manage	all	of	the	styling	and	application	state	yourself.

Framework-specific	authentication	components

The	framework-specific	libraries	available	in	Amplify	for	frameworks
like	React,	React	Native,	Vue,	and	Angular	expose	higher-level
abstractions	for	managing	authentication.	These	components	will
render	an	entire	(customizable)	authentication	flow	with	only	a	few
lines	of	code.

In	Chapter	1,	you	had	a	chance	to	try	out	the	higher-order	component
(HOC)	from	the	AWS	Amplify	React	library	called
withAuthenticator.	Here,	you’ll	be	using	this	HOC	along	with
routing	to	create	protected	routes	and	a	profile	view	that	can	only	be
viewed	if	the	user	is	signed	in.



Building	the	App
The	next	step	will	be	to	go	ahead	and	create	the	folder	and	file	structure
for	the	app.

Creating	the	File	and	Folder	Structure

In	your	app,	create	the	following	files	in	the	src	directory:

Container.js

Nav.js

Profile.js

Protected.js

Public.js

Router.js

These	files	do	the	following:

Container.js

This	file	will	hold	a	component	you	will	be	using	to	apply	reusable
styling	to	the	other	components.

Nav.js

In	this	component,	you	will	create	a	navigation	UI.

Profile.js

This	component	will	render	profile	information	about	the	logged-in
user.	This	will	also	be	the	component	where	we	add	the	authentication
component	for	signing	up	and	signing	in.

Protected.js

This	is	the	component	we	will	be	using	as	an	example	of	how	to	create
a	protected	route.	If	the	user	is	signed	in,	they	will	be	able	to	view	this
route.	If	they	are	not	signed	in,	they	will	be	redirected	to	the	sign-in
form.



Public.js

This	is	a	basic	route	that	will	be	viewable	whether	or	not	the	user	is
signed	in.

Router.js

This	file	will	hold	the	router	and	some	logic	to	determine	the	current
route	name.

Now	that	these	files	have	been	created,	you	have	everything	you	need	to
begin	writing	some	code.

Creating	the	First	Component

To	start,	let’s	create	the	most	simple	component	we	will	be	using	for	the
app—the	Container	component.	This	component	is	what	we	will	be
using	to	wrap	all	of	our	other	components	so	that	we	can	apply	some
reusable	styles	between	the	components:

/*	src/Container.js	*/

import	React	from	'react'

const	Container	=	({	children	})	=>	(

		<div	style={styles.container}>

				{	children	}

		</div>

)

const	styles	=	{

		container:	{

				margin:	'0	auto',

				padding:	'50px	100px'

		}

}

export	default	Container

Using	this	component,	you	can	now	apply	consistent	styling	across	the
entire	app	without	having	to	rewrite	your	styles.	You	can	then	use	it	like



this:

<Container>

		<h1>Hello	World</h1>

</Container>

Anything	that	is	a	child	of	the	Container	component	will	be	rendered
with	the	styling	set	in	the	Container	component.	Doing	this	allows	you
to	have	a	single	place	that	you	can	control	the	styles.	In	case	you	want	to
make	styling	changes	later,	you	only	need	to	adjust	one	component.

Public	Component

This	component	simply	renders	the	name	of	the	route	to	the	UI	and	can	be
accessed	whether	or	not	the	user	is	signed	in.	In	this	component,	you	will
use	the	Container	component	to	add	some	padding	and	margin:

/*	src/Public.js	*/

import	React	from	'react'

import	Container	from	'./Container'

function	Public()	{

		return	(

				<Container>

						<h1>Public	route</h1>

				</Container>

		)

}

export	default	Public

Nav	Component

The	Nav	(navigation)	component	will	be	utilizing	the	Ant	Design	library
and	React	Router.	Ant	Design	will	provide	the	Menu	and	Icon
components	to	make	a	nice	looking	menu,	and	React	Router	will	provide
the	Link	component	so	that	we	can	link	and	navigate	to	different	parts	of



the	app.

You’ll	also	notice	that	there	is	a	current	prop	that	is	passed	in	to	the
component.	This	prop	represents	the	name	of	the	current	route.	For	this
application	the	value	will	either	be	home,	profile,	or	protected.
The	current	value	is	used	in	the	selectedKeys	array	of	the	Menu
component	to	highlight	the	current	route	in	the	navigation	bar.	This	value
will	be	calculated	in	the	Router	component	and	passed	into	this
component	as	a	prop:

/*	src/Nav.js	*/

import	React	from	'react'

import	{	Link	}	from	'react-router-dom'

import	{	Menu	}	from	'antd'

import	{	HomeOutlined,	ProfileOutlined,	FileProtectOutlined	}	

from

									'@ant-design/icons'

const	Nav	=	(props)	=>	{

		const	{	current	}	=	props

		return	(

				<div>

						<Menu	selectedKeys={[current]}	mode="horizontal">

								<Menu.Item	key='home'>

										<Link	to={`/`}>

												<HomeOutlined	/>Home

										</Link>

								</Menu.Item>

								<Menu.Item	key='profile'>

										<Link	to='/profile'>

										<ProfileOutlined	/>Profile

										</Link>

								</Menu.Item>

								<Menu.Item	key='protected'>

										<Link	to='/protected'>

												<FileProtectOutlined	/>Protected

										</Link>

								</Menu.Item>

						</Menu>

				</div>

		)

}



export	default	Nav

Protected	Component

The	Protected	component	will	be	the	protected,	or	private,	route.	If	the
user	trying	to	access	this	route	is	signed	in,	they	will	be	able	to	view	this
route.	If	they	are	not	signed	in,	they	will	be	redirected	to	the	profile	page
to	sign	up	or	sign	in.

In	this	component,	you	will	be	using	the	useEffect	hook	from	React
and	the	Auth	class	from	AWS	Amplify:

useEffect

This	is	a	React	hook	that	allows	you	to	perform	side	effects	in	function
components.	This	hook	accepts	a	function	that	is	called	when	the
function	renders	for	the	first	time	and,	optionally,	every	additional	time
that	it	renders.	By	passing	in	an	empty	array	as	the	second	argument,
we	are	choosing	to	only	fire	the	function	once:	when	the	component
loads.	If	you	have	used	componentDidMount	in	a	React	class,
useEffect	has	similar	characteristics	and	use	cases.

Auth

This	AWS	Amplify	class	handles	user	identity	management.	You	can
use	this	class	to	do	everything	from	signing	a	user	up	and	signing	them
in	to	resetting	their	password.	In	this	component	we	will	be	calling	a
method,	Auth.currentAuthenticatedUser,	that	will	check	if
the	user	is	currently	signed	in	and,	if	so,	return	data	about	the	signed-in
user:

/*	src/Protected.js	*/

import	React,	{	useEffect	}	from	'react';

import	{	Auth	}	from	'aws-amplify'

import	Container	from	'./Container'

function	Protected(props)	{



		useEffect(()	=>	{

				Auth.currentAuthenticatedUser()

						.catch(()	=>	{

								props.history.push('/profile')

						})

		},	[])

		return	(

				<Container>

						<h1>Protected	route</h1>

				</Container>

		);

}

export	default	Protected

When	the	component	is	rendered,	we	check	to	see	if	the	user	is	signed	in
to	the	app	by	calling	Auth.currentAuthenticatedUser	in	the
useEffect	hook.	If	this	API	call	is	not	successful,	that	means	the	user	is
not	signed	in	and	we	need	to	redirect	them.	We	redirect	them	by	calling
props.history.push('/profile').

If	the	user	is	signed	in,	then	we	take	no	action	and	allow	them	to	view	the
route.

Router	Component

The	Router	component	will	define	the	components	and	routes	we	want
to	have	available	in	our	application.

This	component	will	also	be	setting	the	current	route	name	that	will	be
used	in	the	Nav	component	to	highlight	the	current	route	based	on	the
window.location.href	property.

The	components	that	you	will	be	using	from	React	Router	are
HashRouter,	Switch,	and	Route:



HashRouter

This	is	a	router	that	uses	the	hash	portion	of	the	URL	(i.e.,
window.location.hash)	to	keep	your	UI	in	sync	with	the	URL.

Switch

Switch	renders	the	first	child	route	that	matches	the	location.	This	is
different	than	the	default	functionality	of	just	using	the	router,	which
may	render	multiple	routes	that	match	the	location.

Route

This	component	allows	you	to	define	the	component	that	you’d	like	to
render	based	on	a	path	parameter:

/*	src/Router.js	*/

import	React,	{	useState,	useEffect	}	from	'react'

import	{	HashRouter,	Switch,	Route	}	from	'react-router-dom'

import	Nav	from	'./Nav'

import	Public	from	'./Public'

import	Profile	from	'./Profile'

import	Protected	from	'./Protected'

const	Router	=	()	=>	{

		const	[current,	setCurrent]	=	useState('home')

		useEffect(()	=>	{

				setRoute()

				window.addEventListener('hashchange',	setRoute)

				return	()	=>		window.removeEventListener('hashchange',	

setRoute)

		},	[])

		function	setRoute()	{

				const	location	=	window.location.href.split('/')

				const	pathname	=	location[location.length-1]

				setCurrent(pathname	?	pathname	:	'home')

		}

		return	(

				<HashRouter>

						<Nav	current={current}	/>

						<Switch>

								<Route	exact	path="/"	component={Public}/>

								<Route	exact	path="/protected"	component={Protected}	/>

								<Route	exact	path="/profile"	component={Profile}/>



								<Route	component={Public}/>

						</Switch>

				</HashRouter>

		)

}

export	default	Router

Inside	the	useEffect	hook	in	this	component,	we	set	the	route	name	by
calling	setRoute.	We	also	set	up	an	event	listener	to	call	setRoute
whenever	the	route	changes.

When	declaring	a	Route	component,	you	can	pass	in	the	component	you
would	like	to	render	as	the	component	prop.

Profile	Component

The	last	component	we	need	to	finish	our	app	is	the	Profile
component.	This	component	will	do	several	things:

Render	the	authentication	form	if	the	user	is	not	signed	in.

Provide	a	sign-out	button.

Render	the	user’s	profile	information	to	the	UI.

Just	like	in	Chapter	1,	we	are	using	the	withAuthenticator	HOC	to
render	the	authentication	flow	by	wrapping	the	Profile	component	in
the	default	export.	This	will	show	the	sign-up/sign-in	form	if	the	user	is
not	signed	in,	and	if	the	user	is	signed	in	will	show	the	UI	with	the	user’s
profile	details.

To	sign	the	user	out,	we	use	the	AmplifySignOut	UI	component.	This
component	will	sign	the	user	out	and	re-render	the	UI	to	show	the
authentication	form.



To	display	the	user	profile	data,	we	use	the
Auth.currentAuthenticatedUser	method.	If	the	user	is	signed
in,	this	method	will	return	the	user	profile	data	along	with	information
about	the	session.	The	information	that	we	are	interested	in	using	for	the
profile	are	the	username	and	user	attributes,	which	include	the	phone
number,	email,	and	any	other	information	gathered	when	the	user	signed
up:

/*	src/Profile.js	*/

import	React,	{	useState,	useEffect	}	from	'react'

import	{	Auth	}	from	'aws-amplify'

import	{	withAuthenticator,	AmplifySignOut	}	from	'@aws-

amplify/ui-react'

import	Container	from	'./Container'

function	Profile()	{

		useEffect(()	=>	{

				checkUser()

		},	[])

		const	[user,	setUser]	=	useState({})

		async	function	checkUser()	{

				try	{

						const	data	=	await	Auth.currentUserPoolUser()

						const	userInfo	=	{	username:	data.username,	

...data.attributes,	}

						setUser(userInfo)

				}	catch	(err)	{	console.log('error:	',	err)	}

		}

		return	(

				<Container>

						<h1>Profile</h1>

						<h2>Username:	{user.username}</h2>

						<h3>Email:	{user.email}</h3>

						<h4>Phone:	{user.phone_number}</h4>

						<AmplifySignOut	/>

				</Container>

		);

}

export	default	withAuthenticator(Profile)

Styling	the	UI	Components



Under	the	hood,	the	Amplify	UI	components	are	implemented	using	Web
Components.	This	means	we	can	target	them	as	a	first-class	HTML
element	for	CSS	styling.	We	want	our	UI	components	to	match	the	blue
colors	in	the	rest	of	our	app.	To	do	so,	we	can	add	the	following	CSS
property	to	the	bottom	of	index.css	to	define	the	colors	we’d	like	to	use:

/*	src/index.css	*/

:root	{

		--amplify-primary-color:	#1890ff;

		--amplify-primary-tint:	#1890ff;

		--amplify-primary-shade:	#1890ff;

}

Configuring	the	App

Now	the	app	is	built.	The	last	thing	we	need	to	do	is	update	index.js	to
import	the	Router	and	add	the	Amplify	configuration.	We	also	want	to
import	the	necessary	CSS	for	the	Ant	Design	library:

/*	src/index.js	*/

import	React	from	'react';

import	ReactDOM	from	'react-dom';

import	'./index.css';

import	Router	from	'./Router';

import	'antd/dist/antd.css';

import	Amplify	from	'aws-amplify'

import	config	from	'./aws-exports'

Amplify.configure(config)

ReactDOM.render(<Router	/>,	document.getElementById('root'));

Testing	the	App

To	test	the	app,	we	can	now	run	the	start	command:

~	npm	start



Summary
Congratulations,	you’ve	built	out	an	authentication	flow	with	routing	and
protected	routes!

Here	are	a	few	things	to	keep	in	mind	from	this	chapter:

Use	the	withAuthenticator	HOC	to	quickly	get	up	and
running	with	a	preconfigured	authentication	flow.

Use	the	Auth	class	for	more	fine-grained	control	over
authentication	and	to	get	data	about	the	currently	signed-in	user.

Ant	Design	helps	you	get	started	with	preconfigured	design
without	having	to	write	any	style-specific	code.



Chapter	5.	Custom
Authentication	Strategies

In	this	chapter,	we	will	be	building	and	improving	the	app	we	completed
in	Chapter	4,	where	you	learned	how	to	use	the	withAuthenticator
HOC	to	create	a	preconfigured	authentication	form.	You	also	learned	how
to	use	React	Router	and	the	Auth	class	to	create	public	and	protected
routes	based	on	the	user’s	signed-in	state.

While	this	lays	the	foundation	for	what	can	be	done	with	Amplify	and	the
basics	around	authentication	and	routing,	we	want	to	go	one	step	further
and	build	a	completely	custom	authentication	flow	so	we	know	exactly
what	is	going	on	under	the	hood	and	understand	the	logic	and	state	needed
to	manage	a	custom	authentication	form.	This	means	that	we	need	to
update	our	app	to	have	custom	forms	for	signing	up,	signing	in,	and
resetting	our	password	instead	of	using	the	withAuthenticator
HOC.

We	will	also	take	the	idea	of	protected	routes	one	step	further	by	creating	a
hook	that	we	can	reuse	to	wrap	any	component	we	are	wanting	to	protect
with	authentication	(instead	of	rewriting	the	logic	in	each	component).

The	Auth	class,	with	over	30	different	methods,	is	very	powerful	and
allows	you	to	handle	all	of	the	authentication	logic	that	most	applications
demand.	By	the	end	of	this	chapter,	you	will	understand	how	to	use	the
Auth	class	and	React	state	to	build	and	manage	a	custom	authentication
form.



Creating	the	protectedRoute	Hook
The	first	thing	we	will	do	is	to	create	the	custom	protectedRoute
hook	that	we	will	be	using	to	protect	any	routes	that	require
authentication.	This	hook	will	check	for	the	signed-in	user	information,
and	if	the	user	is	not	signed	in,	will	redirect	them	to	the	sign-in	page	or
another	specified	route.	If	the	user	is	signed	in,	the	hook	will	return	and
render	the	component	passed	in	as	an	argument.	By	using	this	hook,	we
can	do	away	with	any	duplicate	logic	around	authentication	that	we	may
need	across	multiple	components.

In	the	src	directory,	create	a	new	file	called	protectedRoute.js	and	add	the
following	code:

import	React,	{	useEffect	}	from	'react'

import	{	Auth	}	from	'aws-amplify'

const	protectedRoute	=	(Comp,	route	=	'/profile')	=>	(props)	=>	

{

		async	function	checkAuthState()	{

				try	{

						await	Auth.currentAuthenticatedUser()

				}	catch	(err)	{

						props.history.push(route)

				}

		}

		useEffect(()	=>	{

				checkAuthState()

		},	[])

		return	<Comp	{...props}	/>

}

export	default	protectedRoute

This	component	uses	the	useEffect	hook	when	the	component	loads	to
check	if	the	user	is	signed	in.	If	the	user	is	signed	in,	nothing	happens	and
the	component	that	is	passed	in	as	an	argument	gets	rendered.	If	the	user	is
not	signed	in,	we	do	a	redirect.



The	redirect	route	can	either	be	passed	in	as	the	second	argument	to	the
hook,	or	if	no	redirect	route	is	passed	in,	we	set	the	default	to	be
/profile.	Now,	we	can	use	the	hook	to	protect	any	component	like	this:

//	Default	redirect	route

export	default	protectedRoute(App)

//	Custom	redirect	route

export	default	protectedRoute(App,	'/about-us')

Now	that	the	protected	route	hook	has	been	created,	we	can	begin	the
refactor	of	our	app.	The	next	thing	we	may	want	to	do	is	update	the
Protected	component	in	our	app	to	use	this	new	protectedRoute
hook.	To	do	so,	open	Protected.js	and	update	the	component	with	this
code:

import	React	from	'react';

import	Container	from	'./Container'

import	protectedRoute	from	'./protectedRoute'

function	Protected()	{

		return	(

				<Container>

						<h1>Protected	route</h1>

				</Container>

		);

}

export	default	protectedRoute(Protected)

Now	this	component	is	protected	and	users	will	continue	to	be	redirected
when	trying	to	access	it	if	they	are	not	authenticated.

Creating	the	Form
The	next	thing	we	will	want	to	do	is	create	the	main	Form	component.
This	component	will	hold	all	of	the	logic	and	UI	for	the	following	actions:



Signing	up

Confirming	sign	up

Signing	in

Resetting	password

In	Chapter	4,	we	used	the	withAuthenticator	component	that
encapsulated	most	of	this	logic	for	us,	but	we	will	now	be	rewriting	our
own	version	of	this	from	scratch.	It	is	important	to	understand	how	to
create	and	handle	custom	forms	because	you	might	work	with	custom
designs	and	business	logic	that	may	not	be	compatible	with	abstractions
like	the	withAuthenticator	component.

The	first	thing	we’ll	do	is	create	the	new	component	files	that	we	will
need.	In	the	src	directory,	create	the	following	files:

Button.js

Form.js

SignUp.js

ConfirmSignUp.js

SignIn.js

ForgotPassword.js

ForgotPasswordSubmit.js

Now	that	you	have	created	these	components,	let’s	continue	by	creating	a
reusable	button	that	will	serve	the	submit	button	across	all	of	the	forms.	In
Button.js,	add	the	following	code:

import	React	from	'react'

export	default	function	Button({	onClick,	title	})	{

		return	(

				<button	style={styles.button}	onClick={onClick}>

						{title}

				</button>

		)

}



const	styles	=	{

		button:	{

				backgroundColor:	'#006bfc',

				color:	'white',

				width:	316,

				height:	45,

				fontWeight:	'600',

				fontSize:	14,

				cursor:	'pointer',

				border:'none',

				outline:	'none',

				borderRadius:	3,

				marginTop:	'25px',

				boxShadow:	'0px	1px	3px	rgba(0,	0,	0,	.3)',

		},

}

The	Button	component	is	a	basic	component	that	accepts	two	props:
title	and	onClick.	The	onClick	handler	will	call	the	function
associated	with	the	button	and	the	title	component	will	render	the	text
for	the	button.

Next,	open	Form.js	and	add	the	following	code:

/*	src/Form.js	*/

import	React,	{	useState	}	from	'react'

import	{	Auth	}	from	'aws-amplify'

import	SignIn	from	'./SignIn'

import	SignUp	from	'./SignUp'

import	ConfirmSignUp	from	'./ConfirmSignUp'

import	ForgotPassword	from	'./ForgotPassword'

import	ForgotPasswordSubmit	from	'./ForgotPasswordSubmit'

const	initialFormState	=	{

		username:	'',	password:	'',	email:	'',	confirmationCode:	''

}

function	Form(props)	{

		const	[formType,	updateFormType]	=	useState('signIn')

		const	[formState,	updateFormState]	=	

useState(initialFormState)

		function	renderForm()	{}

		return	(

				<div>

						{renderForm()}



				</div>

		)

}

Here,	we’ve	imported	the	individual	form	components	(that	we	will	be
writing	shortly)	and	created	some	initial	form	state.	The	items	that	we	will
be	keeping	up	with	in	the	form	state	are	the	input	fields	(username,
password,	email,	and	confirmationCode)	for	the	authentication
flow.

There’s	another	piece	of	component	state	that	keeps	up	with	the	type	of
form	to	be	rendered:	formType.	Because	the	form	components	will	be
displayed	all	in	one	route,	we	will	need	to	check	what	the	current	form
state	is	and	then	render	the	Sign	Up	form,	Sign	In	form,	or	Reset	Password
form.

updateFormType	will	be	the	function	that	switches	between	different
form	types.	Once	a	user	has	successfully	signed	up,	for	example,	we	will
call	updateFormType('signIn')	to	render	the	SignIn	component
so	that	they	can	then	sign	in.

The	renderForm	function	will	be	updated	later	with	some	custom	logic,
but	for	now,	does	not	do	anything.

Next,	add	the	following	styles	and	default	export	to	Form.js.	The	styles	for
some	of	the	elements	will	be	shared	among	the	components,	so	we	will	be
exporting	the	component	as	well	as	the	styling:

const	styles	=	{

		container:	{

				display:	'flex',

				flexDirection:	'column',

				marginTop:	150,

				justifyContent:	'center',



				alignItems:	'center'

		},

		input:	{

				height:	45,

				marginTop:	8,

				width:	300,

				maxWidth:	300,

				padding:	'0px	8px',

				fontSize:	16,

				outline:	'none',

				border:	'none',

				borderBottom:	'2px	solid	rgba(0,	0,	0,	.3)'

		},

		toggleForm:	{

				fontWeight:	'600',

				padding:	'0px	25px',

				marginTop:	'15px',

				marginBottom:	0,

				textAlign:	'center',

				color:	'rgba(0,	0,	0,	0.6)'

		},

		resetPassword:	{

				marginTop:	'5px',

		},

		anchor:	{

				color:	'#006bfc',

				cursor:	'pointer'

		}

}

export	{	styles,	Form	as	default	}

Next,	let’s	go	ahead	and	create	the	individual	form	components.

SignIn	Component

The	SignIn	component	will	render	the	sign-in	form.	This	component
will	accept	two	props,	one	for	updating	the	form	state
(updateFormState)	and	one	for	calling	the	signIn	function:

/*	src/SignIn.js	*/

import	React	from	'react'

import	Button	from	'./Button'

import	{	styles	}	from	'./Form'



function	SignIn({	signIn,	updateFormState	})	{

		return	(

				<div	style={styles.container}>

						<input

								name='username'

								onChange={e	=>	{e.persist();updateFormState(e)}}

								style={styles.input}

								placeholder='username'

						/>

						<input

								type='password'

								name='password'

								onChange={e	=>	{e.persist();updateFormState(e)}}

								style={styles.input}

								placeholder='password'

						/>

						<Button	onClick={signIn}	title="Sign	In"	/>

				</div>

		)

}

export	default	SignIn

SignUp	Component

The	SignUp	component	will	render	the	sign-up	form.	This	component
will	accept	two	props,	one	for	updating	the	form	state
(updateFormState)	and	one	for	calling	the	signUp	function:

/*	src/SignUp.js	*/

import	React	from	'react'

import	Button	from	'./Button'

import	{	styles	}	from	'./Form'

function	SignUp({	updateFormState,	signUp	})	{

		return	(

				<div	style={styles.container}>

						<input

								name='username'

								onChange={e	=>	{e.persist();updateFormState(e)}}

								style={styles.input}

								placeholder='username'

						/>

						<input

								type='password'

								name='password'



								onChange={e	=>	{e.persist();updateFormState(e)}}

								style={styles.input}

								placeholder='password'

						/>

						<input

								name='email'

								onChange={e	=>	{e.persist();updateFormState(e)}}

								style={styles.input}

								placeholder='email'

						/>

						<Button	onClick={signUp}	title="Sign	Up"	/>

				</div>

		)

}

export	default	SignUp

ConfirmSignUp	Component

Once	a	user	has	signed	up,	they	will	receive	a	confirmation	code	for	MFA.
The	ConfirmSignUp	component	holds	the	form	that	will	handle	and
submit	this	MFA	code.

This	component	will	accept	two	props	(in	React,	props	means
“properties,”	in	regard	to	passing	data	among	components),	one	for
updating	the	form	state	(updateFormState)	and	one	for	calling	the
confirmSignUp	function:

/*	src/ConfirmSignUp.js	*/

import	React	from	'react'

import	Button	from	'./Button'

import	{	styles	}	from	'./Form'

function	ConfirmSignUp(props)	{

		return	(

				<div	style={styles.container}>

						<input

								name='confirmationCode'

								placeholder='Confirmation	Code'

								onChange={e	=>	{e.persist();props.updateFormState(e)}}

								style={styles.input}

						/>

						<Button	onClick={props.confirmSignUp}	title="Confirm	Sign	



Up"	/>

				</div>

		)

}

export	default	ConfirmSignUp

The	next	two	forms	will	be	for	handling	the	resetting	of	a	forgotten
password.	The	first	form	(ForgotPassword)	will	take	the	user’s
username	as	an	input	and	send	them	a	confirmation	code.	They	can	then
use	that	confirmation	code	along	with	a	new	password	to	reset	the
password	in	the	second	form	(ForgotPasswordSubmit).

ForgotPassword	Component

The	ForgotPassword	component	will	accept	two	props,	one	for
updating	the	form	state	(updateFormState)	and	one	for	calling	the
forgotPassword	function:

/*	src/ForgotPassword.js	*/

import	React	from	'react'

import	Button	from	'./Button'

import	{	styles	}	from	'./Form'

function	ForgotPassword(props)	{

		return	(

				<div	style={styles.container}>

						<input

								name='username'

								placeholder='Username'

								onChange={e	=>	{e.persist();props.updateFormState(e)}}

								style={styles.input}

						/>

						<Button	onClick={props.forgotPassword}	title="Reset	

password"	/>

				</div>

		)

}

export	default	ForgotPassword



ForgotPasswordSubmit	Component

The	ForgotPasswordSubmit	component	will	accept	two	props,	one
for	updating	the	form	state	(updateFormState)	and	one	for	calling	the
forgotPassword	function:

/*	src/ForgotPasswordSubmit.js	*/

import	React	from	'react'

import	Button	from	'./Button'

import	{	styles	}	from	'./Form'

function	ForgotPasswordSubmit(props)	{

		return	(

				<div	style={styles.container}>

						<input

								name='confirmationCode'

								placeholder='Confirmation	code'

								onChange={e	=>	{e.persist();props.updateFormState(e)}}

								style={styles.input}

						/>

						<input

								name='password'

								placeholder='New	password'

								type='password'

								onChange={e	=>	{e.persist();props.updateFormState(e)}}

								style={styles.input}

						/>

						<Button	onClick={props.forgotPasswordSubmit}	title="Save	

new	password"	/>

				</div>

		)

}

export	default	ForgotPasswordSubmit

Completing	Form.js

Now	that	all	of	the	individual	form	components	have	been	created,	we	can
update	Form.js	to	use	these	new	components.

The	next	thing	we	will	do	is	open	Form.js	and	create	the	functions	that
will	interact	with	the	authentication	service.	These	functions—signIn,



signUp,	confirmSignUp,	forgotPassword,	and
forgotPasswordSubmit—will	be	passed	as	props	to	the	individual
form	components.

Below	the	last	import,	add	the	following	code:

/*	src/Form.js	*/

async	function	signIn({	username,	password	},	setUser)	{

		try	{

				const	user	=	await	Auth.signIn(username,	password)

				const	userInfo	=	{	username:	user.username,	

...user.attributes	}

				setUser(userInfo)

		}	catch	(err)	{

				console.log('error	signing	up..',	err)

		}

}

async	function	signUp({	username,	password,	email	},	

updateFormType)	{

		try	{

				await	Auth.signUp({

						username,	password,	attributes:	{	email	}

				})

				console.log('sign	up	success!')

				updateFormType('confirmSignUp')

		}	catch	(err)	{

				console.log('error	signing	up..',	err)

		}

}

async	function	confirmSignUp({	username,	confirmationCode	},	

updateFormType)	{

		try	{

				await	Auth.confirmSignUp(username,	confirmationCode)

				updateFormType('signIn')

		}	catch	(err)	{

				console.log('error	signing	up..',	err)

		}

}

async	function	forgotPassword({	username	},	updateFormType)	{

		try	{

				await	Auth.forgotPassword(username)

				updateFormType('forgotPasswordSubmit')

		}	catch	(err)	{



				console.log('error	submitting	username	to	reset	

password...',	err)

		}

}

async	function	forgotPasswordSubmit(

				{	username,	confirmationCode,	password	},	updateFormType

		)	{

		try	{

				await	Auth.forgotPasswordSubmit(username,	confirmationCode,	

password)

				updateFormType('signIn')

		}	catch	(err)	{

				console.log('error	updating	password...	:',	err)

		}

}

The	signUp,	confirmSignUp,	forgotPassword,	and
forgotPasswordSubmit	functions	will	all	take	the	same	arguments,
the	form	state	object,	and	the	updateFormType	function	to	update	the
type	of	form	that	is	displayed.

The	signIn	function	is	different	than	the	other	functions	in	that	it	takes
in	a	setUser	function.	This	setUser	function	will	be	passed	into	the
Form	component	as	a	prop	from	the	Profile	component.	This
setUser	function	will	allow	us	to	re-render	the	Profile	component	in
order	to	show	or	hide	the	form	once	the	user	has	successfully	signed	in.

In	Chapter	4,	the	Profile.js	component	used	the	withAuthenticator
component	to	render	the	form,	so	we	did	not	need	to	render	the	proper	UI
ourselves.	Now	that	we	are	handling	our	own	form	state,	we	will	need	to
decide	whether	to	render	the	Profile	component	or	the	Form
component	based	on	whether	the	user	is	authenticated.

You’ll	notice	that	in	these	functions	we	are	using	different	methods	on	the
Auth	class	from	AWS	Amplify.	These	methods	correspond	with	the



naming	of	the	functions	we’ve	created	so	that	we	know	exactly	what	each
of	these	functions	is	doing.

updateForm	Helper	Function

Next,	let’s	create	a	helper	function	for	updating	the	form	state.	The	initial
form	state	variable	that	we	created	in	Form.js	looks	like	this:

const	initialFormState	=	{

		username:	'',	password:	'',	email:	'',	confirmationCode:	''

}

This	state	is	an	object	with	values	for	each	form	that	we	will	be	using.

We	then	used	this	initialFormState	variable	to	create	the
component	state	(as	well	as	a	function	to	update	the	component	state)
using	the	useState	hook:

const	[formState,	updateFormState]	=	useState(initialFormState)

The	problem	that	we	have	now	is	that	updateFormState	is	expecting
a	new	object	with	all	of	these	fields	in	order	to	update	the	form	state,	but	a
form	handler	only	gives	us	the	single	form	event	that	is	being	typed.	How
can	we	transform	this	input	event	into	a	new	object	for	the	state?	We’ll	do
this	by	creating	a	helper	function	that	we	will	use	inside	of	the	Form
function.

In	Form.js,	add	the	following	code	below	the	useState	hooks	and
inside	the	Form	function:

function	updateForm(event)	{

		const	newFormState	=	{

				...formState,	[event.target.name]:	event.target.value

		}

		updateFormState(newFormState)



}

The	updateForm	function	will	create	a	new	state	object	using	the
existing	state	as	well	as	the	new	values	coming	in	from	the	event	and	then
call	updateFormState	with	this	new	form	object.	We	can	then	reuse
this	function	across	all	of	our	components.

renderForm	Function

Now	that	we	have	all	of	the	form	components	created,	the	form	state
setup,	and	the	authentication	functions	created,	let’s	update	the
renderForm	function	to	render	the	current	form.	In	Form.js,	update	the
renderForm	function	to	use	the	following	code:

function	renderForm()	{

		switch(formType)	{

				case	'signUp':

						return	(

								<SignUp

										signUp={()	=>	signUp(formState,	updateFormType)}

										updateFormState={e	=>	updateForm(e)}

								/>

						)

				case	'confirmSignUp':

						return	(

								<ConfirmSignUp

										confirmSignUp={()	=>	confirmSignUp(formState,	

updateFormType)}

										updateFormState={e	=>	updateForm(e)}

								/>

						)

				case	'signIn':

						return	(

								<SignIn

										signIn={()	=>	signIn(formState,	props.setUser)}

										updateFormState={e	=>	updateForm(e)}

								/>

						)

				case	'forgotPassword':

						return	(

								<ForgotPassword

								forgotPassword={()	=>	forgotPassword(formState,	



updateFormType)}

								updateFormState={e	=>	updateForm(e)}

								/>

						)

				case	'forgotPasswordSubmit':

						return	(

								<ForgotPasswordSubmit

										forgotPasswordSubmit={

												()	=>	forgotPasswordSubmit(formState,	

updateFormType)}

										updateFormState={e	=>	updateForm(e)}

								/>

						)

				default:

						return	null

		}

}

The	renderForm	function	will	check	the	current	formType	that	is	set
in	the	state	and	render	the	proper	form.	As	the	formType	changes,
renderForm	will	be	called	and	subsequently	re-render	the	correct	form
based	on	the	formType.

Form	Type	Toggles

The	last	thing	we	will	need	to	do	in	this	component	is	render	the	buttons
that	will	allow	us	to	manually	toggle	between	different	form	states.	The
three	main	form	states	that	we	will	want	to	toggle	between	are	signIn,
signUp,	and	forgotPassword.

To	do	this,	let’s	update	the	return	statement	from	the	Form	function	to
also	return	some	buttons	that	allow	the	user	to	toggle	the	form	type:

return	(

		<div>

				{renderForm()}

				{

						formType	===	'signUp'	&&	(

								<p	style={styles.toggleForm}>

										Already	have	an	account?	<span



												style={styles.anchor}

												onClick={()	=>	updateFormType('signIn')}

										>Sign	In</span>

								</p>

						)

				}

				{

						formType	===	'signIn'	&&	(

								<>

										<p	style={styles.toggleForm}>

												Need	an	account?	<span

														style={styles.anchor}

														onClick={()	=>	updateFormType('signUp')}

												>Sign	Up</span>

										</p>

										<p	style={{	...styles.toggleForm,	

...styles.resetPassword}}>

												Forget	your	password?	<span

														style={styles.anchor}

														onClick={()	=>	updateFormType('forgotPassword')}

												>Reset	Password</span>

										</p>

								</>

						)

				}

		</div>

)

The	Form	component	will	now	show	different	buttons	based	on	the
current	form	type	and	allow	the	user	to	toggle	between	signing	in,	signing
up,	and	resetting	their	password.

Updating	the	Profile	Component

We	now	need	to	update	the	Profile	component	to	use	the	new	Form
component.	The	main	changes	are	that	we	will	be	rendering	either	the
Form	component	or	the	user	profile	information	based	on	whether	there	is
a	currently	signed-in	user.

Amplify	has	a	local	eventing	system	called	Hub.	Amplify	uses	Hub	for
different	categories	to	communicate	with	one	another	when	specific	events



occur,	such	as	authentication	events	like	a	user	sign-in	or	notification	of	a
file	download.

In	this	component,	we	will	also	be	setting	a	Hub	listener	to	listen	for	the
signOut	authentication	event	so	that	we	can	remove	the	user	from	the
state	and	re-render	the	Profile	component	to	show	the	authentication
form.

Update	Profile.js	with	the	following	code:

import	React,	{	useState,	useEffect	}	from	'react'

import	{	Button	}	from	'antd'

import	{	Auth,	Hub	}	from	'aws-amplify'

import	Container	from	'./Container'

import	Form	from	'./Form'

function	Profile()	{

		useEffect(()	=>	{

				checkUser()

				Hub.listen('auth',	(data)	=>	{

						const	{	payload	}	=	data

						if	(payload.event	===	'signOut')	{

								setUser(null)

						}

				})

		},	[])

		const	[user,	setUser]	=	useState(null)

		async	function	checkUser()	{

				try	{

						const	data	=	await	Auth.currentUserPoolUser()

						const	userInfo	=	{	username:	data.username,	

...data.attributes,	}

						setUser(userInfo)

				}	catch	(err)	{	console.log('error:	',	err)	}

		}

		function	signOut()	{

				Auth.signOut()

						.catch(err	=>	console.log('error	signing	out:	',	err))

		}

		if	(user)	{

				return	(

						<Container>

								<h1>Profile</h1>

								<h2>Username:	{user.username}</h2>



								<h3>Email:	{user.email}</h3>

								<h4>Phone:	{user.phone_number}</h4>

								<Button	onClick={signOut}>Sign	Out</Button>

						</Container>

				);

		}

		return	<Form	setUser={setUser}	/>

}

export	default	Profile

In	this	component,	we	check	to	see	if	there	is	a	user,	and	if	so	we	return
the	profile	information	of	the	user.	If	there	is	no	user,	then	we	return	the
authentication	form	(Form).	We	pass	in	setUser	as	a	prop	to	the	Form
component	so	that	when	a	user	signs	in	we	can	update	the	form	state	to	re-
render	the	component	and	show	the	profile	information	for	that	user.

Testing	the	App

To	test	the	app,	we	can	now	run	the	start	command:

npm	start

Summary
Congratulations,	you’ve	built	out	a	completely	custom	authentication
flow!

Here	are	a	few	things	to	keep	in	mind	from	this	chapter:

Use	the	Auth	class	for	handling	direct	API	calls	to	the	Amazon
Cognito	authentication	service.

As	you	can	see,	handling	custom	form	state	can	become	verbose.
Try	to	understand	the	trade-offs	between	rolling	your	own
authentication	flow	versus	using	something	like	the
withAuthenticator	HOC.



Authentication	is	complex.	By	using	a	managed-identity	service
like	Amazon	Cognito,	we’ve	abstracted	away	all	of	the	backend
code	and	logic.	The	only	thing	we	have	to	know	or	understand	is
how	to	interact	with	the	authentication	APIs	and	then	manage	the
local	state.



Chapter	6.	Serverless
Functions	In-Depth:	Part	1

In	Chapter	2,	you	learned	how	to	create	and	interact	with	a	serverless	API
using	API	Gateway	and	AWS	Lambda.	Here,	you’ll	continue	to	learn
about	how	to	use	serverless	functions	by	creating	two	new	types	of
functions.	The	functions	in	this	chapter	will	be	different	in	that,	instead	of
using	them	as	strictly	a	web	server	or	an	API,	you’ll	be	using	them	to
interact	with	other	AWS	services	to	aid	in	the	application-development
process.

You’ll	be	creating	the	following	two	kinds	of	functions	in	this	chapter:

A	function	that	dynamically	adds	a	user	to	a	group	based	on	their	email
address

In	some	applications,	you	will	need	to	perform	“coarse-grained”
access	control,	which	typically	means	granting	certain	permissions	to
users	in	a	broad	way	based	on	the	type	of	role	or	group	they	are
associated	with.	In	our	example,	we’ll	have	an	administrator	group	of
users	that	will	be	identified	by	their	email	address.	If	a	user	signs	up
with	one	of	these	email	addresses,	we	will	place	them	in	a	group	called
Admin.

A	function	that	automatically	resizes	an	image	after	it	has	been	uploaded
to	Amazon	S3

Many	applications	require	dynamic	image	resizing	on	the	server	after	a
user	has	uploaded	an	image.	This	is	done	for	many	reasons,	ranging
from	the	need	to	make	the	web	application	more	performant	by
compressing	images	to	the	need	to	dynamically	create	avatars	or



thumbnail	images	of	a	smaller	size	for	images.

In	Chapter	7,	we’ll	continue	learning	about	serverless	functions	by
creating	an	ecommerce	application	that	interacts	with	a	database	and
allows	the	user	to	create,	read,	update,	and	delete	items	from	a	database	by
invoking	the	function	via	an	API	call.

Event	Sources	and	Data	Structure
In	Chapter	2,	we	briefly	talked	about	event	sources	for	serverless	functions
as	part	of	an	event-based	architecture.	The	only	event	source	we	have
implemented	up	until	this	point	has	been	from	API	Gateway:	an	HTTP
request	that	triggered	the	function,	and	fetched	data	from	an	API	and
returned	it	in	the	response.	In	this	chapter,	we’ll	be	working	with	two	other
event	types	and	sources,	one	from	Amazon	S3	and	one	from	Amazon
Cognito.

To	understand	the	events	coming	into	Lambda	from	the	event	sources,	it’s
important	to	underscore	the	following	point:	the	shape	of	the	event	data
will	differ	between	different	event	types.	For	instance,	the	HTTP	event
data	structure	coming	from	API	Gateway	will	be	different	than	the
Amazon	S3	event	data	structure,	and	the	Amazon	S3	event	data	structure
will	differ	from	the	Amazon	Cognito	data	structure.

Understanding	the	shape	of	the	event	data,	as	well	as	knowing	the	data
available	to	you	in	the	event,	will	help	you	understand	the	capabilities	of
what	you	can	do	in	the	Lambda	function.	To	understand	this	better,	let’s
take	a	look	at	the	shape	of	various	data	structures	from	different	events.
For	now,	you	do	not	need	to	understand	every	field	and	value	in	these	data
structures.	I	will	outline	the	values	that	will	be	important	for	us	in	the



following	examples.

API	Gateway	Event

The	API	gateway	event	data	is	the	data	structure	that	will	be	passed	into
the	Lambda	function	when	invoking	it	from	an	API	Gateway	HTTP	event,
like	GET,	PUT,	POST,	or	DELETE.	This	data	structure	holds	information
like	the	HTTP	method	that	invoked	the	function,	the	path	that	was
invoked,	the	body	if	one	was	passed	in,	and	the	identity	of	the	user	calling
the	API	(inside	the	requestContext.identity	field)	if	the	user
was	authenticated:

{

				"resource":	"/items",

				"path":	"/items",

				"httpMethod":	"GET",

				"headers":	{	/*	header	info	*/	},

				"multiValueHeaders":	{	/*	multi	value	header	info	*/	},

				"queryStringParameters":	null,

				"multiValueQueryStringParameters":	null,

				"pathParameters":	null,

				"stageVariables":	null,

				"requestContext":	{

								"resourceId":	"b16tgj",

								"resourcePath":	"/items",

								"httpMethod":	"GET",

								"extendedRequestId":	"CzuJMEDMoAMF_MQ=",

								"requestTime":	"07/Nov/2019:21:46:09	+0000",

								"path":	"/dev/items",

								"accountId":	"557458351015",

								"protocol":	"HTTP/1.1",

								"stage":	"dev",

								"domainPrefix":	"eq4ttnl94k",

								"requestTimeEpoch":	1573163169162,

								"requestId":	"1ac70afe-d366-4a52-9329-5fcbcc3809d8",

								"identity":	{

										"cognitoIdentityPoolId":	"",

										"accountId":	"",

										"cognitoIdentityId":	"",

										"caller":	"",

										"apiKey":	"",

										"sourceIp":	"192.168.100.1",

										"cognitoAuthenticationType":	"",



										"cognitoAuthenticationProvider":	"",

										"userArn":	"",

										"userAgent":	"Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	

10_11_6)

										AppleWebKit/537.36	(KHTML,	like	Gecko)	

Chrome/52.0.2743.82

										Safari/537.36	OPR/39.0.2256.48",

										"user":	""

								},

								"domainName":	"eq4ttnl94k.execute-api.us-east-

1.amazonaws.com",

								"apiId":	"eq4ttnl94k"

				},

				"body":	null,

				"isBase64Encoded":	false

}

Amazon	S3	Event

The	Amazon	S3	event	is	the	data	structure	that	will	be	received	when
invoking	a	Lambda	function	from	a	file	upload	or	update	to	Amazon	S3.
This	data	structure	holds	an	array	of	records	from	S3.	The	main
information	you’ll	typically	be	working	with	in	this	event	data	is	the	s3
field.	This	property	holds	information	like	the	bucket	name,	the	key,	and
the	size	of	the	item	being	stored:

{

		"Records":	[

				{

						"eventVersion":	"2.1",

						"eventSource":	"aws:s3",

						"awsRegion":	"us-east-2",

						"eventTime":	"2019-09-03T19:37:27.192Z",

						"eventName":	"ObjectCreated:Put",

						"userIdentity":	{

								"principalId":	"AWS:AIDAINPONIXQXHT3IKHL2"

						},

						"requestParameters":	{

								"sourceIPAddress":	"205.255.255.255"

						},

						"responseElements":	{

								"x-amz-request-id":	"D82B88E5F771F645",

								"x-amz-id-2":	

"vlR7PnpV2Ce81l0PRw6jlUpck7Jo5ZsQjryTjKlc5aLWGVHPZLj



																							5NeC6qMa0emYBDXOo6QBU0Wo="

						},

						"s3":	{

								"s3SchemaVersion":	"1.0",

								"configurationId":	"828aa6fc-f7b5-4305-8584-

487c791949c1",

								"bucket":	{

										"name":	"lambda-artifacts-deafc19498e3f2df",

										"ownerIdentity":	{

												"principalId":	"A3I5XTEXAMAI3E"

										},

										"arn":	"arn:aws:s3:::lambda-artifacts-

deafc19498e3f2df"

								},

								"object":	{

										"key":	"b21b84d653bb07b05b1e6b33684dc11b",

										"size":	1305107,

										"eTag":	"b21b84d653bb07b05b1e6b33684dc11b",

										"sequencer":	"0C0F6F405D6ED209E1"

								}

						}

				}

		]

}

Amazon	Cognito	Event

The	Amazon	Cognito	event	data	is	the	data	structure	that	will	be	passed
into	the	function	when	being	invoked	from	an	Amazon	Cognito	action.
These	actions	could	be	anything	from	a	user	signing	up,	a	user	confirming
their	account,	or	a	user	signing	in,	among	other	available	events:

{

				"version":	"1",

				"region":	"us-east-1",

				"userPoolId":	"us-east-1_uVWAMpQuY",

				"userName":	"dabit3",

				"callerContext":	{

								"awsSdkVersion":	"aws-sdk-unknown-unknown",

								"clientId":	"2ects9inqraapp43ejve80pv12"

				},

				"triggerSource":	"PostConfirmation_ConfirmSignUp",

				"request":	{

								"userAttributes":	{

												"sub":	"164961f8-13f7-40ed-a8ca-d441d8ec4724",



												"cognito:user_status":	"CONFIRMED",

												"email_verified":	"true",

												"phone_number_verified":	"false",

												"phone_number":	"+16018127241",

												"email":	"dabit3@gmail.com"

								}

				},

				"response":	{}

}

You’ll	be	using	these	events	and	the	information	contained	within	them	to
perform	different	types	of	actions	from	within	the	functions.

IAM	Permissions	and	Trigger	Configuration
When	setting	up	these	triggers	using	the	CLI,	a	couple	of	things	are
happening	under	the	hood:

The	CLI	is	enabling	the	trigger	itself	in	the	Lambda
configuration.	When	a	trigger	is	enabled,	the	event	will	be	sent	to
the	function	every	time	that	interaction	happens	(API	event,	S3
upload,	etc.).

The	CLI	is	giving	additional	permissions	to	the	function	itself	to
interact	with	other	services.	For	instance,	when	we	enable	the	S3
trigger	in	this	chapter,	we	are	wanting	the	Lambda	function	to	be
able	to	read	and	store	images	in	that	bucket.

To	enable	this,	the	CLI	will	add	additional	Identity	and	Access
Management	(IAM)	policies	under	the	hood	to	the	function,
giving	it	permissions	like	read	and	write	access	to	work	with	S3,
or	permissions	to	interact	with	the	Cognito	user	pool	in	our	other
example.

Creating	the	Base	Project
The	first	thing	we’ll	do	is	create	a	new	React	application	and	install	the



dependencies	we’ll	need	for	this	chapter:

~	npx	create-react-app	lambda-trigger-example

~	cd	lambda-trigger-example

~	npm	install	aws-amplify	@aws-amplify/ui-react	uuid

Next,	we’ll	create	a	new	Amplify	project:

~	amplify	init

#	walk	through	the	steps	like	we've	done	in	the	previous	

projects

Now	that	the	project	has	been	initialized,	we	can	begin	adding	the
services.	The	services	we’ll	need	for	this	chapter	will	be	Amazon	Cognito,
Amazon	S3,	and	AWS	Lambda.	We’ll	start	by	adding	Amazon	Cognito
and	testing	out	a	post-confirmation	Lambda	trigger.

Adding	a	Post-Confirmation	Lambda	Trigger
The	next	thing	we	want	to	do	is	create	an	authentication	service.	We	will
then	create	and	configure	a	post-confirmation	Lambda	trigger.	This	means
we	want	a	Lambda	function	to	be	invoked	every	time	someone
successfully	signs	up	and	confirms	their	account	using	our	authentication
service.	This	post-confirmation	trigger	only	fires	once	per	confirmed	user:

~	amplify	add	auth

?	Do	you	want	to	use	the	default	authentication	and	security	

configuration?

		Default	configuration

?	How	do	you	want	users	to	be	able	to	sign	in?	Username

?	Do	you	want	to	configure	advanced	settings?	Yes

?	What	attributes	are	required	for	signing	up?	Email

?	Do	you	want	to	enable	any	of	the	following	capabilities?	Add	

User	to	Group

?	Enter	the	name	of	the	group	to	which	users	will	be	added.	

Admin

?	Do	you	want	to	edit	your	add-to-group	function	now?	Y



Now,	update	the	function	with	the	following	code:

//	amplify/backend/function/<function_name>/src/add-to-group.js

const	aws	=	require('aws-sdk');

exports.handler	=	async	(event,	context,	callback)	=>	{

		const	cognitoProvider	=	new

		aws.CognitoIdentityServiceProvider({

				apiVersion:	'2016-04-18'

		});

		let	isAdmin	=	false

		const	adminEmails	=	['dabit3@gmail.com']

		//	If	the	user	is	one	of	the	admins,	set	the	isAdmin	variable	

to	true

		if	(adminEmails.indexOf(event.request.userAttributes.email)	

!==	-1)	{

				isAdmin	=	true

		}

		const	groupParams	=	{

				UserPoolId:	event.userPoolId,

		}

		const	userParams	=	{

				UserPoolId:	event.userPoolId,

				Username:	event.userName,

		}

		if	(isAdmin)	{

				groupParams.GroupName	=	'Admin',

				userParams.GroupName	=	'Admin'

				//	First	check	to	see	if	the	group	exists,	and	if	not	create	

the	group

				try	{

						await	cognitoProvider.getGroup(groupParams).promise();

				}	catch	(e)	{

						await	cognitoProvider.createGroup(groupParams).promise();

				}

				//	If	the	user	is	an	administrator,	place	them	in	the	Admin	

group

				try	{

						await	

cognitoProvider.adminAddUserToGroup(userParams).promise();



						callback(null,	event);

				}	catch	(e)	{

						callback(e);

				}

		}	else	{

				//	If	the	user	is	in	neither	group,	proceed	with	no	action

				callback(null,	event)

		}

}

In	this	function,	there	is	one	main	piece	of	functionality.	If	the	user	is	one
of	the	admins	specified	in	the	admins	email	array,	we	automatically
place	them	in	the	group	called	Admins.	Change	the	values	in	the
adminEmails	array	to	include	your	email	address.

To	deploy	the	service,	run	the	push	command:

~	amplify	push

Now	that	the	backend	is	set	up,	we	can	test	it	out.	To	do	so,	we	first	need
to	configure	the	React	project	to	recognize	the	Amplify	dependencies.
Open	src/index.js	and	add	the	following	below	the	last	import:

import	Amplify	from	'aws-amplify'

import	config	from	'./aws-exports'

Amplify.configure(config)

Next,	we’ll	sign	up	a	new	user	and	display	a	greeting	if	they	are	an	admin.
To	do	so,	open	src/App.js	and	add	the	following:

import	React,	{	useEffect,	useState	}	from	'react'

import	{	Auth	}	from	'aws-amplify'

import	{	withAuthenticator,	AmplifySignOut	}	from	'@aws-

amplify/ui-react'

import	'./App.css'

function	App()	{

		const	[user,	updateUser]	=	useState(null)

		useEffect(()	=>	{

				Auth.currentAuthenticatedUser()



						.then(user	=>	updateUser(user))

						.catch(err	=>	console.log(err));

		},	[])

		let	isAdmin	=	false

		if	(user)	{

				const	{	signInUserSession:	{	idToken:	{	payload	}}	}		=	user

				console.log('payload:	',	payload)

				if	(

						payload['cognito:groups']	&&

				payload['cognito:groups'].includes('Admin')

				)	{

						isAdmin	=	true

				}

		}

		return	(

				<div	className="App">

						<header>

						<h1>Hello	World</h1>

						{	isAdmin	&&	<p>Welcome,	Admin</p>	}

						</header>

						<AmplifySignOut	/>

				</div>

		);

}

export	default	withAuthenticator(App)

Run	the	app:

~	npm	start

Now,	sign	up	with	an	admin	user.	If	the	user	is	indeed	one	of	the	admins,
you	should	see	the	Welcome,	Admin	greeting.

You	can	also	view	the	Amazon	Cognito	authentication	service	and	all	of
the	users	and	groups	by	running	the	following	command:

~	amplify	console	auth

?	Which	console:	User	Pool

>	In	the	left	hand	menu,	click	on	"Users	and	Groups"



Dynamic	Image	Resizing	with	AWS	Lambda
and	Amazon	S3
In	the	next	example,	we	will	add	functionality	that	allows	users	to	upload
images	to	Amazon	S3.	We’ll	also	configure	an	S3	trigger	to	call	a	Lambda
function	every	time	a	file	is	uploaded	to	the	bucket.	In	this	function,	we’ll
check	the	size	of	the	image,	and	if	it	is	above	a	certain	width,	we	will
resize	it	to	be	below	the	width	threshold.

For	this	to	work,	we	need	to	enable	S3	to	trigger	the	Lambda	function	in
our	project	when	a	file	is	uploaded.	We	can	do	this	using	the	Amplify	CLI
by	just	creating	the	S3	bucket	and	choosing	the	correct	configuration.
From	the	CLI,	run	the	following	commands:

~	amplify	add	storage

?	Please	select	from	one	of	the	below	mentioned	services:	

Content

?	Please	provide	a	friendly	name	for	your	resource	that	will	be	

used	to	label

		this	category	in	the	project:	<your_resource_name>

?	Please	provide	bucket	name:	<your_globally_unique_bucket_name>

?	Who	should	have	access:	Auth	and	Guest	users

?	What	kind	of	access	do	you	want	for	Authenticated	users?	

Choose	all

		(create	/	update,	read,	&	delete)

?	What	kind	of	access	do	you	want	for	Guest	users?	Choose	all

		(create	/	update,	read,	&	delete)

?	Do	you	want	to	add	a	Lambda	Trigger	for	your	S3	Bucket?	Y

?	Select	from	the	following	options:	Create	a	new	function

?	Do	you	want	to	edit	the	local	S3Trigger18399e19	lambda	

function	now?	Y

This	will	open	the	function	into	your	text	editor.

Adding	the	Custom	Logic	for	Resizing	the	Image

Now,	we	can	update	the	function	to	implement	the	image	resizing.



In	this	function,	we	will	fetch	the	image	from	S3	when	the	event	comes
through,	and	check	to	see	if	it	is	greater	than	1,000	pixels	wide.	If	that’s
the	case,	then	we’ll	resize	it	to	1,000	pixels	wide	and	save	it	back	to	the	S3
bucket.	If	the	image	is	not	larger	than	1,000	pixels	wide,	we	exit	from	the
function	without	taking	any	action:

//	amplify/backend/function/<functionname>/src/index.js

//	Import	the	sharp	library

const	sharp	=	require('sharp')

const	aws	=	require('aws-sdk')

const	s3	=	new	aws.S3()

exports.handler	=	async	function	(event,	context)	{	//eslint-

disable-line

		//	If	the	event	type	is	delete,	return	from	the	function

		if	(event.Records[0].eventName	===	'ObjectRemoved:Delete')	

return

		//	Next,	we	get	the	bucket	name	and	the	key	from	the	event.

		const	BUCKET	=	event.Records[0].s3.bucket.name

		const	KEY	=	event.Records[0].s3.object.key

		try	{

				//	Fetch	the	image	data	from	S3

				let	image	=	await	s3.getObject({	Bucket:	BUCKET,	Key:	KEY	

}).promise()

				image	=	await	sharp(image.Body)

				//	Get	the	metadata	from	the	image,	including	the	width	and	

the	height

				const	metadata	=	await	image.metadata()

				if	(metadata.width	>	1000)	{

						//	If	the	width	is	greater	than	1000,	the	image	is	resized

						const	resizedImage	=	await	image.resize({	width:	1000	

}).toBuffer()

						await	s3.putObject({

								Bucket:	BUCKET,

								Body:	resizedImage,

								Key:	KEY

						}).promise()

						return

				}	else	{

						return

				}

		}

		catch(err)	{



				context.fail(`Error	getting	files:	${err}`);

		}

};

For	our	function	to	work,	we	need	to	do	one	more	thing.	We	are	requiring
the	Sharp	library	in	our	Lambda	function,	but	so	far	we	have	not	installed
this	dependency.	To	make	sure	this	module	is	installed,	update	the
package.json	file	for	the	function	to	add	both	the	dependency	for	the
package	as	well	as	an	install	script	that	we	will	need	in	order	for	Sharp	to
run	correctly	in	the	Lambda	environment.	The	two	fields	we	will	be
adding	are	scripts	and	dependencies:

//	amplify/backend/function/<functionname>/src/package.json

{

		"name":	"your-function-name",

		"version":	"2.0.0",

		"description":	"Lambda	function	generated	by	Amplify",

		"main":	"index.js",

		"license":	"Apache-2.0",

		"scripts":	{

				"install":	"npm	install	--arch=x64	--platform=linux	--

target=10.15.0	sharp"

		},

		"dependencies":	{

				"sharp":	"^0.23.2"

		}

}

Now,	the	service	is	ready	to	be	deployed:

~	amplify	push

Uploading	Images	from	the	React	Application

Next,	open	src/App.js	and	add	the	following	code	to	render	an	image
picker	and	photo	list:

import	React,	{	useState,	useEffect}	from	'react'

import	{	Storage	}	from	'aws-amplify'

import	{	v4	as	uuid	}	from	'uuid'



import	'./App.css'

function	App()	{

		const	[images,	setImages]	=	useState([])

		useEffect(()	=>	{

				fetchImages()

		},	[])

		async	function	onChange(e)	{

				/*	When	a	file	is	uploaded,	create	a	unique	name	and	save	it	

using

							the	Storage	API	*/

				const	file	=	e.target.files[0];

				const	filetype	=	file.name.split('.')[file.name.split.length	

-	1]

				await	Storage.put(`${uuid()}.${filetype}`,	file)

				/*	Once	the	file	is	uploaded,	fetch	the	list	of	images	*/

				fetchImages()

		}

		async	function	fetchImages()	{

				/*	This	function	fetches	the	list	of	image	keys	from	your	S3	

bucket	*/

				const	files	=	await	Storage.list('')

				/*	Once	we	have	the	image	keys,	the	images	must	be	signed	in	

order

							for	them	to	be	displayed	*/

				const	signedFiles	=	await	Promise.all(files.map(async	file	

=>	{

						/*	To	sign	the	images,	we	map	over	the	image	key	array	and	

get	a

									signed	url	for	each	image	*/

						const	signedFile	=	await	Storage.get(file.key)

						return	signedFile

				}))

				setImages(signedFiles)

		}

		return	(

				<div	className="App">

						<header	className="App-header">

								<input

										type="file"

										onChange={onChange}

								/>

								{

										images.map(image	=>	(

												<img

														src={image}

														key={image}

														style={{	width:	500	}}

												/>



										))

								}

						</header>

				</div>

		);

}

export	default	App

Next,	run	the	app:

~	npm	start

When	you	upload	an	image	that	is	wider	than	1,000	pixels,	you’ll	notice
that	it	will	initially	load	as	the	original	size,	but	if	you	reload	the	app,	you
will	see	that	the	image	has	been	resized	to	the	correct	1,000-pixel	width.

Summary
Congratulations,	you’ve	now	successfully	implemented	two	types	of
Lambda	triggers!

Here	are	a	few	things	to	keep	in	mind	from	this	chapter:

Lambda	functions	can	be	invoked	from	many	different	event
types,	including	API	calls,	image	uploads,	database	operations,
and	authentication	events.

The	event	data	structure	differs	based	on	the	type	of	event
invoking	the	Lambda	function.

Understanding	the	data	available	in	the	event	variable	enables
you	to	better	evaluate	the	things	that	can	be	accomplished	within
the	function.

When	a	Lambda	trigger	is	enabled	by	the	Amplify	CLI,
additional	IAM	permissions	are	given	to	the	function,	allowing	it
to	directly	interact	with	other	services.



Chapter	7.	Serverless
Functions	In-Depth:	Part	2

So	far,	we	have	covered	quite	a	bit	of	functionality	that	can	be	achieved
using	a	Lambda	function.	In	this	chapter,	we’ll	continue	learning	how	to
use	Lambda	functions	in	different	ways	to	implement	common
functionality	you’ll	find	useful	when	building	applications.	We’ll	get	into
how	to	create	and	integrate	into	our	app	a	fully	functional	backend
complete	with	an	API,	authentication,	a	database,	and	authorization	rules.

With	Amplify,	there	are	two	main	ways	to	create	APIs:	GraphQL	and
REST.	We’ll	continue	to	cover	GraphQL	in	Chapter	8,	but	here,	we’ll
learn	how	to	do	this	with	a	REST	API	running	in	a	Lambda	function.

The	database	we	will	use	is	Amazon	DynamoDB,	a	NoSQL	database.	We
will	be	invoking	the	Lambda	function	from	an	HTTP	request	routed
through	an	API	gateway	endpoint.	The	Lambda	function	will	take	the
HTTP	request	and	then	route	it	to	different	paths	as	the	function	will	be
running	an	Express	web	server.

This	will	allow	us	to	have	different	routes	available	within	a	single
function.	We	will	then	map	different	HTTP	methods,	like	post	and
delete,	to	the	routes	to	perform	different	actions	on	the	database.

What	We’ll	Build
We’ll	be	building	a	basic	ecommerce	app	that	allows	users	to	view



products,	and	administrators	to	create	and	delete	products.	The	building
blocks	of	this	app	will	lay	the	groundwork	for	building	almost	any	type	of
CRUD+L	(create,	read,	update,	delete,	and	list)	application,	which	is	the
backbone	of	many	real-world	projects.

We	will	be	using	what	we	learned	in	Chapters	2	and	6	and	building	upon
those	ideas	in	this	chapter.

The	services	and	features	we’ll	be	needing	are	the	following:

Lambda	function

The	main	application	logic	will	reside	in	a	Lambda	function	that	will
be	running	an	Express	server.	The	server	will	have	routes	for	the
different	HTTP	methods	we	will	need	to	work	with:	get,	post,	and
delete.

API

In	order	to	interact	with	the	main	Lambda	function,	we	will	need	to	be
able	to	invoke	it	using	HTTP	requests,	sending	get,	post,	and
delete	requests	to	interact	with	the	API	and	the	database.

DynamoDB	NoSQL	Database

This	is	the	database	that	will	hold	all	of	the	data	for	the	application.

Authentication

We	will	need	a	way	to	authenticate	users	in	order	to	configure	and
enable	administrator	access.

Another	Lambda	function

We	will	need	a	Lambda	trigger	to	place	administrators	into	an	Admin
group,	so	there	will	be	another	Lambda	function	(post-confirmation
trigger)	associated	with	the	authentication	flow.



Like	in	previous	chapters,	we	will	need	to	integrate	navigation	into	the
client	application	for	linking	between	routes.	When	a	user	is	signed	in,	we
will	access	the	user’s	groups	to	determine	the	state	of	the	app	based	on	the
user’s	permissions.	These	permissions	might	include	determining	whether
or	not	to	show	the	Admin	navigation	link	or	to	allow	users	to	view	the
buttons	to	delete	items	based	on	whether	they	are	an	administrator	or	not.

We	will	also	have	some	authorization	guards	on	the	server	to	make	sure
that	if	a	user	performs	an	action,	that	they	are	indeed	authorized	to
perform	that	action.

Getting	Started
The	first	thing	we	will	need	to	do	to	get	started	is	to	create	a	new	React
application	and	install	the	necessary	dependencies:

~	npx	create-react-app	ecommerceapp

~	cd	ecommerceapp

~	npm	install	aws-amplify	@aws-amplify/ui-react	react-router-dom	

antd

Next,	we	will	initialize	a	new	Amplify	project	and	begin	adding	the
services	we’ll	need	for	this	application:

~	amplify	init

#	Follow	the	steps	to	give	the	project	a	name,	environment	name,	

and

		set	the	default	text	editor.

#	Accept	defaults	for	everything	else	and	choose	your	AWS	

Profile.

Adding	Authentication	and	Group	Privileges



The	first	service	we’ll	create	is	the	authentication	service.	We	need	to	be
sure	to	also	create	the	Lambda	trigger	in	order	to	add	users	to	the	Admin
group	that	we	will	be	creating:

~	amplify	add	auth

?	Do	you	want	to	use	the	default	authentication	and	security	

configuration?

		Default	configuration

?	How	do	you	want	users	to	be	able	to	sign	in?	Username

?	Do	you	want	to	configure	advanced	settings?	Yes

?	What	attributes	are	required	for	signing	up?	Email

?	Do	you	want	to	enable	any	of	the	following	capabilities?	Add	

User	to	Group

?	Enter	the	name	of	the	group	to	which	users	will	be	added.	

Admin

?	Do	you	want	to	edit	your	add-to-group	function	now?	Y

Update	the	function	with	the	following	code	and	configure	the
adminEmails	array:

//	amplify/backend/function/<function_name>/src/add-to-group.js

const	aws	=	require('aws-sdk');

exports.handler	=	async	(event,	context,	callback)	=>	{

		const	cognitoProvider	=	new

		aws.CognitoIdentityServiceProvider({

				apiVersion:	'2016-04-18'

		});

		let	isAdmin	=	false

		//	Update	this	array	to	include	any	admin	emails	you	would	

like	to	enable

		const	adminEmails	=	['dabit3@gmail.com']

		//	If	the	user	is	one	of	the	admins,	set	the	isAdmin	variable	

to	true

		if	(adminEmails.indexOf(event.request.userAttributes.email)	

!==	-1)	{

				isAdmin	=	true

		}

		if	(isAdmin)	{

				const	groupParams	=	{

						UserPoolId:	event.userPoolId,



						GroupName:	'Admin'

				}

				const	userParams	=	{

						UserPoolId:	event.userPoolId,

						Username:	event.userName,

						GroupName:	'Admin'

				}

				//	First	check	to	see	if	the	group	exists,	and	if	not	create	

the	group

				try	{

						await	cognitoProvider.getGroup(groupParams).promise();

				}	catch	(e)	{

						await	cognitoProvider.createGroup(groupParams).promise();

				}

				//	The	user	is	an	administrator,	place	them	in	the	Admin	

group

				try	{

						await	

cognitoProvider.adminAddUserToGroup(userParams).promise();

						callback(null,	event);

				}	catch	(e)	{	callback(e);	}

		}	else	{

				//	If	the	user	is	in	neither	group,	proceed	with	no	action

				callback(null,	event)

		}

}

In	this	function,	we	set	an	array	of	admin	emails	and	an	isAdmin
variable.	If	the	confirmed	user	is	an	admin,	we	first	check	to	see	if	the
Admin	group	has	already	created	in	the	service.	If	it	has	not	yet	been
created,	we	create	it.

We	then	add	the	user	to	the	group	by	calling
cognitoProvider.adminAddUserToGroup,	passing	in	the
parameters.

Adding	the	Database
Next,	we	will	create	the	DynamoDB	NoSQL	database	for	the	project.	To
add	the	database,	we	can	use	the	Storage	category:



~	amplify	add	storage

?	Please	select	from	one	of	the	below	mentioned	services:	NoSQL	

Database

?	Please	provide	a	friendly	name	for	your	resource	that	will	be	

used	to	label

		this	category	in	the	project:	producttable

?	Please	provide	table	name:	producttable

?	What	would	you	like	to	name	this	column:	id

?	Please	choose	the	data	type:	string

?	Would	you	like	to	add	another	column?	N

?	Please	choose	partition	key	for	the	table:	id

?	Do	you	want	to	add	a	sort	key	to	your	table?	N

?	Do	you	want	to	add	global	secondary	indexes	to	your	table?	N

?	Do	you	want	to	add	a	Lambda	Trigger	for	your	Table?	N

When	working	with	DynamoDB,	you	have	to	have	either	a	unique
primary	key	or	a	unique	combination	of	primary	and	sort	key	to	uniquely
identify	individual	items	in	the	database.	In	our	database,	we	have	a
primary	key	of	id	that	will	be	the	unique	identifier	for	the	items	in	the
database.

There	is	also	an	option	on	the	table	to	create	global	secondary	indexes
(GSIs).	These	allow	us	to	add	additional	indexes	that	can	be	used	to	query
our	table	and	enable	additional	data	access	patterns.	One	of	the	most
powerful	features	of	DynamoDB	and	NoSQL	databases	in	general	is	the
idea	of	having	other	indexes	(up	to	20	GSIs	for	DynamoDB)	that	enable	a
multitude	of	access	patterns.	We	will	not	be	utilizing	any	secondary
indexes	hre,	but	I	encourage	you	to	look	into	how	this	works	to	further
your	knowledge	of	how	to	maximize	the	power	and	flexibility	of
DynamoDB.

Adding	the	API
Now	that	the	database	has	been	created,	we’ll	now	create	an	API	and
another	Lambda	function	that	will	interact	with	the	database:



~	amplify	add	api

?	Please	select	from	one	of	the	below	mentioned	services:	REST

?	Provide	a	friendly	name	for	your	resource	to	be	used	as	a	

label	for	this

		category	in	the	project:	ecommerceapi

?	Provide	a	path:	/products

?	Choose	a	Lambda	source:	Create	a	new	Lambda	function

?	Provide	a	friendly	name	for	your	resource	to	be	used	as	a	

label	for	this

		category	in	the	project:	ecommercefunction

?	Provide	the	AWS	Lambda	function	name:	ecommercefunction

?	Choose	the	function	runtime	that	you	want	to	use:	NodeJS

?	Choose	the	function	template	that	you	want	to	use:	Serverless	

express

		function	(Integration	with	Amazon	API	Gateway)

?	Do	you	want	to	access	other	resources	created	in	this	project	

from	your

		Lambda	function?	Y

?	Select	the	category:	storage,	auth

?	Select	the	operations	you	want	to	permit	for	<app_name>:	

create,	read,	update,

		delete

?	Select	the	operations	you	want	to	permit	for	producttable:	

create,	read,

		update,	delete

?	Do	you	want	to	invoke	this	function	on	a	recurring	schedule?	N

?	Do	you	want	to	configure	Lambda	layers	for	this	function?	N

?	Do	you	want	to	edit	the	local	Lambda	function	now?	N

?	Restrict	API	access:	Y

?	Who	should	have	access?	Authenticated	and	Guest	users

?	What	kind	of	access	do	you	want	for	Authenticated	users?	

create,	read,

		update,	delete

?	What	kind	of	access	do	you	want	for	Guest	users?	read

?	Do	you	want	to	add	another	path?	N

Now	we’ve	created	an	API	Gateway	endpoint	as	well	as	a	new	Lambda
function	and	integrated	the	function	to	be	triggered	from	the	API	Gateway
event.	The	CLI	walks	us	through	the	setup,	and	allows	us	to	set	some	base
authorization	rules	around	the	API	by	restricting	API	access	based	on
whether	the	user	is	authenticated	or	not.	We’ve	also	set	up	a	path	that	we
will	now	be	able	to	work	with:	/products.



The	Lambda	function	includes	an	Express	server	as	part	of	the	boilerplate
the	CLI	created	for	us.	If	you	haven’t	used	Express	before,	it	is	a	minimal
Node.js	web	framework	that	provides	a	nice	set	of	built-in	features	to
develop	web	and	mobile	applications.	For	our	purposes,	we	will	be	using
it	to	more	easily	provide	routing	that	will	map	to	the	endpoint(s)	that	we
create	in	API	Gateway.	We’ll	now	be	able	to	have	get,	put,	post,	and
delete	methods	that	we	can	call	on	the	/products	endpoint	that	will
be	handled	by	the	Express	framework.

If	we	wanted	to	add	additional	endpoints,	we	could	update	the	api
category	by	running	amplify	update	api	and	then	adding	whatever
new	endpoints	we’d	created	directly	into	the	Express	server	code.

Next,	we	will	go	ahead	and	update	the	code	in	the	Lambda	function	that	is
running	the	Express	server	to	handle	the	interactions	with	the	database	that
we’d	like	to	enable.

The	first	thing	we	need	to	do	is	update	the	imports	for	the	function:

/*	amplify/backend/function/ecommercefunction/src/app.js	*/

/*	Below	the	last	existing	`require`	import,	add	the	following

			imports	variables	*/

const	AWS	=	require('aws-sdk')

const	{	v4:	uuid	}	=	require('uuid')

/*	Cognito	SDK	*/

const	cognito	=	new

AWS.CognitoIdentityServiceProvider({

		apiVersion:	'2016-04-18'

})

/*	Cognito	User	Pool	ID

*		This	User	Pool	ID	variable	will	be	given	to	you	by	the	CLI	

output	after

			adding	the	category

*		This	will	also	be	available	in	the	file	itself,	commented	out	

at	the	top



*/

var	userpoolId	=	process.env.<your_app_id>

//	DynamoDB	configuration

const	region	=	process.env.REGION

const	ddb_table_name	=	process.env.STORAGE_PRODUCTTABLE_NAME

const	docClient	=	new	AWS.DynamoDB.DocumentClient({region})

Next,	we’ll	create	a	couple	of	functions	that	will	allow	us	to	perform
authorization	checks	on	the	API	call.	We	want	only	users	in	the	Admin
group	to	be	able	to	perform	certain	actions	(while	leaving	open	the
potential	to	allow	other	groups	in	future).

To	do	this,	we	will	create	two	functions:	getGroupsForUser	and
canPerformAction:

getGroupsForUser

This	will	allow	us	to	pass	in	the	event	coming	in	from	the	API	call	to
determine	what	groups	the	user	making	the	call	is	currently	associated
with.

canPerformAction

This	first	checks	to	see	if	the	user	is	authenticated	at	all,	and	if	not,
will	reject	the	request.	It	will	then	check	to	see	if	the	user	is	part	of	the
group	passed	in	as	the	second	argument,	and	if	so,	will	allow	the	action
to	happen.	If	not,	it	will	reject	the	action.

Create	the	functions	with	the	following	code:

//	amplify/backend/function/ecommercefunction/src/app.js

async	function	getGroupsForUser(event)	{

		let	userSub	=

				event

						.requestContext

						.identity

						.cognitoAuthenticationProvider

						.split(':CognitoSignIn:')[1]



		let	userParams	=	{

				UserPoolId:	userpoolId,

				Filter:	`sub	=	"${userSub}"`,

		}

		let	userData	=	await	cognito.listUsers(userParams).promise()

		const	user	=	userData.Users[0]

		var	groupParams	=	{

				UserPoolId:	userpoolId,

				Username:	user.Username

		}

		const	groupData	=	await	

cognito.adminListGroupsForUser(groupParams).promise()

		return	groupData

}

async	function	canPerformAction(event,	group)	{

		return	new	Promise(async	(resolve,	reject)	=>	{

				if	

(!event.requestContext.identity.cognitoAuthenticationProvider)	{

						return	reject()

				}

				const	groupData	=	await	getGroupsForUser(event)

				const	groupsForUser	=	groupData.Groups.map(group	=>	

group.GroupName)

				if	(groupsForUser.includes(group))	{

						resolve()

				}	else	{

						reject('user	not	in	group,	cannot	perform	action..')

				}

		})

}

Next,	we	will	update	the	HTTP	methods	of	get,	post,	and	delete	to
interact	with	the	database.

Let’s	first	update	app.get	for	/products:

//	amplify/backend/function/ecommercefunction/src/app.js

app.get('/products',	async	function(req,	res)	{

		try	{

				const	data	=	await	getItems()

				res.json({	data:	data	})

		}	catch	(err)	{

				res.json({	error:	err	})

		}

})



async	function	getItems(){

		var	params	=	{	TableName:	ddb_table_name	}

		try	{

				const	data	=	await	docClient.scan(params).promise()

				return	data

		}	catch	(err)	{

				return	err

		}

}

This	method	calls	a	new	function	that	we	create	named	getItems	that
fetches	the	items	from	the	DynamoDB	table	using	a	scan	operation
(docClient.scan).	If	the	scan	operation	succeeds,	we	return	the	items
in	the	response.	If	the	operation	fails,	we	return	the	error	message.

Next,	let’s	update	app.post	for	/products	to	see	how	to	create	a	new
item	in	DynamoDB:

//	amplify/backend/function/ecommercefunction/src/app.js

app.post('/products',	async	function(req,	res)	{

		const	{	body	}	=	req

		const	{	event	}	=	req.apiGateway

		try	{

				await	canPerformAction(event,	'Admin')

				const	input	=	{	...body,	id:	uuid()	}

				var	params	=	{

						TableName:	ddb_table_name,

						Item:	input

				}

				await	docClient.put(params).promise()

				res.json({	success:	'item	saved	to	database..'	})

		}	catch	(err)	{

				res.json({	error:	err	})

		}

});

This	call	is	a	little	different	than	the	get	call.	You	can	see	that	we	retrieve
the	body	from	the	event	using	the	req	object	and	then	get	event	data
from	the	req.apiGateway	object.



We	first	call	canPerformAction	to	see	if	the	caller	is	an	admin.	If	this
succeeds,	we	continue	on	to	create	an	input	object	using	the	body
argument	and	appending	a	unique	ID	onto	the	object.

We	then	create	a	new	params	variable	that	contains	the	input	along	with
the	table	name.	Finally,	we	call	the	put	method	using	the	DynamoDB
Document	Client	to	create	a	new	item.

Next,	let’s	look	at	how	to	delete	an	item	by	updating	the	app.delete
method	for	/products:

//	amplify/backend/function/ecommercefunction/src/app.js

app.delete('/products',	async	function(req,	res)	{

		const	{	event	}	=	req.apiGateway

		try	{

				await	canPerformAction(event,	'Admin')

				var	params	=	{

						TableName	:	ddb_table_name,

						Key:	{	id:	req.body.id	}

				}

				await	docClient.delete(params).promise()

				res.json({	success:	'successfully	deleted	item'	})

		}	catch	(err)	{

				res.json({	error:	err	})

		}

});

The	delete	method,	like	the	post	method,	requires	an	admin	to
perform	the	action.	To	implement	this,	we	first	check	if	they	are	an	admin
by	calling	canPerformAction.	We	then	call	the	delete	method
using	the	DynamoDB	Document	Client	to	delete	an	item	by	passing	in	the
primary	key	of	id.

Finally,	because	we	used	the	uuid	library	in	our	function,	we	will	need	to
add	it	as	a	dependency	to	the	function’s	package.json	file.	In
amplify/backend/function/ecommercefunction/src/package.json,	add	uuid



as	a	dependency:

{

		...

		"dependencies":	{

				"aws-serverless-express":	"^3.3.5",

				"body-parser":	"^1.17.1",

				"express":	"^4.15.2",

				"uuid":	"^8.0.0"	<-	New	dependency

		},

		...

}

Now,	the	backend	has	been	set	up	and	we	can	deploy	it	to	AWS:

~	amplify	push

Creating	the	Frontend
The	first	thing	we’ll	do	on	the	frontend	is	create	the	files	we’ll	need	to
work	with:

Admin.js

This	component	will	hold	the	Admin	dashboard	to	create	new	items.

Container.js

This	will	be	a	reusable	layout	component.

Main.js

This	holds	the	main	view	of	the	app	that	will	list	the	items	that	are	for
sale	being	pulled	from	the	API	and	database.

Nav.js

This	will	hold	the	navigation	component.

Profile.js



This	will	be	a	basic	profile	component	that	will	allow	users	to	sign	out.

Router.js

This	component	will	hold	the	router.

checkUser.js

This	will	hold	a	function	that	will	retrieve	the	user’s	profile	and
determine	whether	the	user	is	an	admin.

Let’s	next	go	ahead	and	change	into	the	src	directory	and	create	these
components:

~	cd	src

~	touch	Admin.js	Container.js	Main.js	Nav.js	Profile.js	

Router.js	checkUser.js

~	cd	..

Next,	open	src/index.js	and	update	it	with	the	following	code	to	import	the
Router,	the	Amplify	library,	and	the	CSS	from	Ant	Design:

import	React	from	'react'

import	ReactDOM	from	'react-dom'

import	Router	from	'./Router'

import	'antd/dist/antd.css'

import	Amplify	from	'aws-amplify'

import	config	from	'./aws-exports'

Amplify.configure(config)

ReactDOM.render(<Router	/>,	document.getElementById('root'))

Container	Component

The	Container	component	will	provide	a	basic	layout	with	a	fixed
width	and	center	the	components	in	a	consistent	way:

import	React	from	'react'

export	default	function	Container({	children	})	{



		return	(

				<div	style={containerStyle}>

						{children}

				</div>

		)

}

const	containerStyle	=	{

		width:	900,

		margin:	'0	auto',

		padding:	'20px	0px'

}

checkUser	Function

This	function	will	check	the	current	user’s	information	and	then	call	the
updateUser	callback	function	to	update	the	user.	If	there	is	no	user,	it
returns	with	an	empty	object.

If	there	is	a	user,	it	will	check	to	see	if	there	are	any	Cognito	groups
associated	with	the	user,	and	if	so,	check	if	the	user	is	in	the	Admin	group.
If	the	user	is	in	the	Admin	group,	then	the	isAuthorized	Boolean	will
be	set	to	true;	if	not,	the	Boolean	will	be	set	to	false:

/*	src/checkUser.js	*/

import	{	Auth	}	from	'aws-amplify'

async	function	checkUser(updateUser)	{

		const	userData	=	await	Auth

				.currentSession()

				.catch(err	=>	console.log('error:	',	err)

		)

		if	(!userData)	{

				console.log('userData:	',	userData)

				updateUser({})

				return

		}

		const	{	idToken:	{	payload	}}	=	userData

		const	isAuthorized	=

				payload['cognito:groups']	&&

		payload['cognito:groups'].includes('Admin')

		updateUser({

				username:	payload['cognito:username'],



				isAuthorized

		})

}

export	default	checkUser

Nav	Component

The	Nav	component	will	hold	to	main	links	(Home	and	Profile),	and
another	admin	link	that	will	only	be	visible	if	you	are	signed	in	as	an
admin	user:

/*	src/Nav.js	*/

import	React,	{	useState,	useEffect	}	from	'react'

import	{	Link	}	from	'react-router-dom'

import	{	Menu	}	from	'antd'

import	{	HomeOutlined,	UserOutlined,	ProfileOutlined	}	from	

'@ant-design/icons'

import	{	Hub	}	from	'aws-amplify'

import	checkUser	from	'./checkUser'

const	Nav	=	(props)	=>	{

		const	{	current	}	=	props

		const	[user,	updateUser]	=	useState({})

		useEffect(()	=>	{

				checkUser(updateUser)

				Hub.listen('auth',	(data)	=>	{

						const	{	payload:	{	event	}	}	=	data;

						console.log('event:	',	event)

						if	(event	===	'signIn'	||	event	===	'signOut')	

checkUser(updateUser)

				})

		},	[])

		return	(

				<div>

						<Menu	selectedKeys={[current]}	mode="horizontal">

								<Menu.Item	key='home'>

										<Link	to={`/`}>

												<HomeOutlined	/>Home

										</Link>

								</Menu.Item>

								<Menu.Item	key='profile'>

										<Link	to='/profile'>

												<UserOutlined	/>Profile

										</Link>



								</Menu.Item>

								{

										user.isAuthorized	&&	(

												<Menu.Item	key='admin'>

														<Link	to='/admin'>

																<ProfileOutlined	/>Admin

														</Link>

												</Menu.Item>

										)

								}

						</Menu>

				</div>

		)

}

export	default	Nav

In	this	component,	we	use	the	useEffect	hook	to	call	the	checkUser
function	when	the	component	loads.	This	will	set	the	component	state	with
the	user	information	if	there	is	a	signed-in	user.

We	also	set	up	a	listener,	using	the	Hub	component,	to	listen	to	auth
events	(like	signing	up,	signing	in,	and	signing	out).	When	a	user	signs	in
or	signs	out,	we	again	will	invoke	the	checkUser	function	to	keep	the
navigation	state	up	to	date.

In	the	user	interface,	we	then	decide	to	only	show	the	Admin	link	if	the
user	is	an	authorized	admin	user.

Profile	Component

This	component	is	pretty	basic.	If	a	user	is	signed	in,	we	will	render	the
component	and	a	sign-out	button.	If	they	are	not	signed	in,	the
withAuthenticator	component	will	render	sign-up	and	sign-in	flows
for	a	user:

/*	src/Profile.js	*/

import	React	from	'react'



import	'./App.css'

import	{	withAuthenticator,	AmplifySignOut	}	from	'@aws-

amplify/ui-react'

function	Profile()	{

		return	(

				<div	style={containerStyle}>

						<AmplifySignOut	/>

				</div>

		);

}

const	containerStyle	=	{

		width:	400,

		margin:	'20px	auto'

}

export	default	withAuthenticator(Profile)

Router	Component

This	component	configures	three	main	components	and	routes:	Main	(/),
Admin	(/admin),	and	Profile	(/profile).

In	the	useEffect	hook,	we	first	call	the	setRoute	function.	This
function	will	get	the	current	window	location	and	set	the	current	route
information	to	be	passed	down	to	the	Nav	component:

/*	src/Router.js	*/

import	React,	{useState,	useEffect}	from	'react'

import	{	HashRouter,	Route,	Switch	}	from	'react-router-dom'

import	Nav	from	'./Nav'

import	Admin	from	'./Admin'

import	Main	from	'./Main'

import	Profile	from	'./Profile'

export	default	function	Router()	{

		const	[current,	setCurrent]	=	useState('home')

		useEffect(()	=>	{

				setRoute()

				window.addEventListener('hashchange',	setRoute)

				return	()	=>		window.removeEventListener('hashchange',	



setRoute)

		},	[])

		function	setRoute()	{

				const	location	=	window.location.href.split('/')

				const	pathname	=	location[location.length-1]

				console.log('pathname:	',	pathname)

				setCurrent(pathname	?	pathname	:	'home')

		}

		return	(

				<HashRouter>

						<Nav	current={current}	/>

						<Switch>

								<Route	exact	path='/'	component={Main}	/>

								<Route	path='/admin'	component={Admin}	/>

								<Route	path='/profile'	component={Profile}	/>

								<Route	component={Main}	/>

						</Switch>

				</HashRouter>

		)

}

We	also	set	up	a	listener	to	listen	when	the	route	changes	(hashchange),
and	when	it	does,	we	will	call	setRoute	to	set	the	current	route
information	to	be	passed	down	to	the	Nav	component.

Admin	Component

The	Admin	component	contains	a	form	that	will	allow	us	to	create	new
items	in	the	inventory:

/*	src/Admin.js	*/

import	React,	{	useState	}	from	'react'

import	'./App.css'

import	{	Input,	Button	}	from	'antd'

import	{	API	}	from	'aws-amplify'

import	{	withAuthenticator	}	from	'@aws-amplify/ui-react'

const	initialState	=	{

		name:	'',	price:	''

}

function	Admin()	{

		const	[itemInfo,	updateItemInfo]	=	useState(initialState)



		function	updateForm(e)	{

				const	formData	=	{

						...itemInfo,	[e.target.name]:	e.target.value

				}

				updateItemInfo(formData)

		}

		async	function	addItem()	{

				try	{

						const	data	=	{

								body:	{	...itemInfo,	price:	parseInt(itemInfo.price)	}

						}

						updateItemInfo(initialState)

						await	API.post('ecommerceapi',	'/products',	data)

				}	catch	(err)	{

						console.log('error	adding	item...')

				}

		}

		return	(

				<div	style={containerStyle}>

						<Input

								name='name'

								onChange={updateForm}

								value={itemInfo.name}

								placeholder='Item	name'

								style={inputStyle}

						/>

						<Input

								name='price'

								onChange={updateForm}

								value={itemInfo.price}

								style={inputStyle}

								placeholder='item	price'

						/>

						<Button

								style={buttonStyle}

								onClick={addItem}

						>Add	Product</Button>

				</div>

		)

}

const	containerStyle	=	{	width:	400,	margin:	'20px	auto'	}

const	inputStyle	=	{	marginTop:	10	}

const	buttonStyle	=	{	marginTop:	10	}

export	default	withAuthenticator(Admin)

The	main	thing	happening	in	this	component	is	the	addItem	function.



This	function	uses	the	API	category	to	interact	with	the	REST	API	we
created.	When	we	set	up	this	API,	we	named	it	ecommerceapi.	Using
the	API	name,	as	well	as	the	path	(/products),	we	can	make	requests
against	it,	like	get,	put,	post,	and	delete.

In	our	component,	we	called	API.post,	passing	in	an	object	containing
the	data	we	wanted	to	send	in	the	body:

/*	Create	the	object	to	send	with	the	request	*/

const	data	=	{

		body:	{	...itemInfo,	price:	parseInt(itemInfo.price)	}

}

/*	Update	the	local	state	with	the	initial	state	to	clear	the	

form	*/

updateItemInfo(initialState)

/*	Post	to	the	API	*/

await	API.post('ecommerceapi',	'/products',	data)

Main	Component

The	last	component	is	the	Main	component,	which	is	the	main	view	that
renders	the	list	of	inventory	items.

There	are	two	main	functions	in	this	component,	getProducts	and
deleteItem:

getProducts

Calls	the	get	method	on	the	API.	When	the	data	is	returned,	the	state
is	updated,	setting	the	products	array	to	the	data	returned	from	the	API.

deleteItem

1.	 The	id	of	the	item	to	be	deleted	is	used	create	a	filtered	list	of
the	products	array	by	removing	the	item	to	be	deleted.

2.	 The	filtered	products	array	is	used	to	update	the	local	state,



creating	an	optimistic	response	in	the	UI	by	deleting	the	item	in
the	view	and	showing	the	new	list	of	products	immediately.

3.	 We	use	the	API	category	to	make	a	delete	request,	passing	in
the	id	of	the	product:

/*	src/Main.js	*/

import	React,	{	useState,	useEffect	}	from	'react'

import	Container	from	'./Container'

import	{	API	}	from	'aws-amplify'

import	{	List	}	from	'antd'

import	checkUser	from	'./checkUser'

function	Main()	{

		const	[state,	setState]	=	useState({products:	[],	loading:	

true})

		const	[user,	updateUser]	=	useState({})

		let	didCancel	=	false

		useEffect(()	=>	{

				getProducts()

				checkUser(updateUser)

				return	()	=>	didCancel	=	true

		},	[])

		async	function	getProducts()	{

				const	data	=	await	API.get('ecommerceapi',	'/products')

				console.log('data:	',	data)

				if	(didCancel)	return

				setState({

						products:	data.data.Items,	loading:	false

				})

		}

		async	function	deleteItem(id)	{

				try	{

						const	products	=	state.products.filter(p	=>	p.id	!==	id)

						setState({	...state,	products	})

						await	API.del('ecommerceapi',	'/products',	{	body:	{	id	}	

})

						console.log('successfully	deleted	item')

				}	catch	(err)	{

						console.log('error:	',	err)

				}

		}

		return	(

				<Container>

						<List

								itemLayout="horizontal"

								dataSource={state.products}



								loading={state.loading}

								renderItem={item	=>	(

										<List.Item

												actions={user.isAuthorized	?

														[<p	onClick={()	=>	deleteItem(item.id)}

														key={item.id}>delete</p>]	:	null}

										>

												<List.Item.Meta

														title={item.name}

														description={item.price}

												/>

										</List.Item>

								)}

						/>

				</Container>

		)

}

export	default	Main

Testing	It	Out
Now,	we	should	be	able	to	run	the	app	and	test	it	out:

~	npm	start

Summary
Congratulations,	you’ve	now	successfully	deployed	a	full	stack	serverless
CRUD+	List	app.

Here	are	a	few	things	to	keep	in	mind	from	this	chapter:

Lambda	functions	can	be	invoked	from	many	different	event
types,	including	API	calls,	image	uploads,	database	operations,
and	authentication	events.	In	this	chapter,	we’ve	enabled
Function	invocations	from	both	HTTP	events	as	well	as
authentication	events.

Running	an	Express	server	in	a	Lambda	function	is	a	great	way	to



extend	the	functionality	of	a	single	function.

The	API	category	takes	in	two	required	arguments	when	working
with	REST	APIs:	the	API	name	and	the	path.	It	also	takes	in	an
optional	third	argument,	an	object	that	can	contain	any	arguments
you	may	want	to	send	in	a	POST	request.

When	interacting	with	DynamoDB	from	a	Node.js	Lambda
function,	use	the	DynamoDB	document	client,	as	it	offers	an
easy-to-use	API	for	creating,	updating,	deleting,	and	querying
items	from	a	DynamoDB	database.



Chapter	8.	AWS	AppSync	In-
Depth

In	Chapter	3,	we	learned	about	GraphQL	and	created	a	basic	GraphQL
API.	In	this	chapter,	we’ll	expand	upon	these	concepts	to	create	a	music
festival	app	using	AWS	AppSync,	from	this	book’s	GitHub	repo.

This	app	will	require	the	following:

Amazon	DynamoDB	tables	will	be	used	for	shows	and	stages.

GraphQL	API	will	be	used	for	creating,	reading,	updating,
deleting,	and	listing	shows	and	stages.

Only	admins	should	be	able	to	create,	update,	or	delete	a	show	or
a	stage.

All	users	should	be	able	to	view	shows	and	stages.

Relationships	should	be	enabled	between	shows	and	stages.

Users	should	be	able	to	view	all	shows	as	well	as	navigate	to
view	show	details.

Building	Skills	for	GraphQL,	AppSync	API,
and	React	Router
In	this	section,	we’ll	cover	how	to	model	relationships	between	GraphQL
types,	how	to	implement	authorization	rules	on	GraphQL	types	and	fields,
how	to	enable	multiple	authorization	modes	for	an	AppSync	API,	and	how
to	enable	route	parameters	using	React	Router.

https://github.com/dabit3/full-stack-serverless-code/tree/master/appsync-in-depth


First	we’ll	briefly	cover	each	of	these	topics,	and	when	we	start	building
out	the	app,	we	will	get	into	them	in	greater	depth.

Relationships	Between	GraphQL	Types

When	creating	a	GraphQL	API,	or	any	API,	modeling	relationships
between	data	becomes	very	important	to	understand.	For	example,	the	app
that	we	are	building	will	have	the	following	two	types:

Stage

This	type	will	hold	the	stage	information	for	individual	performances,
including	the	stage	name	and	stage	ID.	Each	stage	will	have	a	number
of	performances	that	are	associated	with	it.

Performance

This	type	will	hold	the	individual	performance	information,	including
the	performer,	the	description,	the	stage	of	the	performance,	and	the
time	of	the	performance.

For	this	type	of	API,	ideally	you	would	want	to	have	at	least	the	following
access	patterns:

Query	for	a	single	stage	and	performances	for	the	stage

Query	for	all	stages	and	performances	for	each	stage

Query	for	an	individual	performance	and	the	corresponding	stage
info

Query	for	all	performances	and	the	corresponding	stage	info

The	question	is	now	usually	this:	how	can	you	enable	these	different
relationships	and	access	patterns?	And	in	our	case,	how	can	we	do	this
using	a	NoSQL	database	like	DynamoDB?	There	are	two	ways	to



accomplish	this:

Pattern	your	data	in	DynamoDB	in	a	way	that	enables	all	of	these
access	patterns	to	be	performed	using	a	single	table	by	taking
advantage	of	a	combination	of	primary	keys,	sort	keys,	and	local
secondary	indexes.	For	this	to	work	with	AppSync,	we	would
have	to	write	and	maintain	all	of	the	resolver	logic	by	hand	and
from	scratch.

Enable	these	relationships	directly	at	the	resolver	level.	Because
we	are	using	GraphQL,	and	GraphQL	enables	per-field	resolvers,
this	can	be	done.	To	understand	this	better	let’s	take	a	look	at	one
of	the	types	we	will	be	working	with.

STAGE	TYPE	IN	GRAPHQL

To	better	understand	these	concepts,	let’s	take	a	look	at	one	of	the	types
we	will	be	working	with:

type	Stage	{

		id:	ID!

		name:	String!

		performances:	[Performance]

}

When	creating	a	resolver,	or	resolvers,	for	this	type,	here	is	an	example
chain	of	actions	that	you	could	assume	would	happen	when	a	request	is
made	for	stages	and	corresponding	performances:

1.	 The	main	Stage	GraphQL	resolver	will	use	the	stage	ID	to
retrieve	the	stage	information	from	the	Stage	table	in	the
database.

2.	 The	field	of	performances	on	the	Stage	type	will	have	its
own	GraphQL	resolver.	This	resolver	should	use	the	stage	ID	to
retrieve	the	related	performances	by	querying	the	database	using
a	GSI,	returning	only	the	performances	for	that	stage	ID.



GRAPHQL	TRANSFORM:	@CONNECTION

In	Chapter	3,	we	used	the	@model	directive	of	the	GraphQL	Transform
library	to	scaffold	out	an	entire	backend,	including	resolvers,	databases,
and	additional	GraphQL	schema.	As	a	recap,	the	GraphQL	Transform	is	a
library	of	directives	that	allow	us	to	“decorate”	a	GraphQL	schema	and
add	additional	functionality.

Here,	we’ll	be	introducing	a	couple	of	new	directives,	including
@connection,	which	enables	us	to	model	these	relationships	and
generate	the	necessary	resolvers	with	only	a	few	lines	of	code.

Multiple	Authentication	Types

In	Chapter	3,	we	created	a	GraphQL	API	using	the	API	key	as	the
authentication	type.	This	is	fine	for	certain	circumstances,	like	when	you
want	to	have	a	GraphQL	query	available	to	all	users	of	your	app.

AppSync	supports	four	main	authentication	methods:

The	API	key

The	API	key	requires	that,	when	making	an	HTTP	request,	you	send
the	API	key	in	the	header	in	the	form	of	x-api-key	in	some	form	or
fashion.	If	you	are	using	the	Amplify	client	as	we	have	done	so	far	in
this	book,	then	this	is	automatically	sent	for	you.

Amazon	Cognito	user	pools

Amazon	Cognito,	the	managed	authentication	service	we’ve	used
throughout	this	book,	is	one	of	the	mechanisms	we	will	be	using	in	this
chapter.	Using	Amazon	Cognito,	we	can	configure	private	and	group
access	to	the	API	itself	and	to	GraphQL	types	and	fields.

OpenID	Connect



OpenID	Connect	enables	you	to	bring	your	own	authentication
provider,	so	if	you	prefer	another	authentication	service	like	Auth0,	or
your	company	has	its	own	authentication	implementation,	you	can	still
use	it	to	authenticate	against	an	AppSync	API.

IAM

AWS	IAM	type	enforces	the	AWS	Signature	Version	4	signing	process
on	the	GraphQL	API.	You	can	use	an	AWS	IAM	UnAuthenticated
Role	from	Cognito	identity	pools	for	public	access,	allowing	a	more
secure	way	to	enable	public	access	against	your	AppSync	API	versus
an	API	key.

Here	we	will	use	a	combination	of	the	API	key	and	Amazon	Cognito	to
provide	multiple	authentication	types	for	the	API,	enabling	public	read
access	and	private	read	and	write	access.

Authorization

Using	the	GraphQL	Transform	library,	we	can	also	define	different
authorization	rules	for	the	API	by	using	the	@auth	directive.

Using	@auth,	we	can	define	different	types	of	rules,	including	(but	not
limited	to)	the	following:

Enable	all	users	to	create	and	read,	but	only	the	owner	of	the
created	item	to	update	and	delete.

Enable	only	users	of	a	certain	group	to	be	able	to	create,	update,
or	delete.

Enable	all	users	to	read,	but	not	perform	any	other	actions.

A	combination	of	the	preceding	rules.

In	this	instance,	the	app	we	will	be	building	will	support	both	private	and



public	access,	but	we	will	need	to	also	enable	more	control	over	these
rules.	We	need	to	support	the	following:

Authenticated	users	who	are	part	of	the	Amazon	Cognito	group
named	Admin	will	be	able	to	perform	all	actions:	create,	read,
update,	and	delete.

Users	who	are	not	authenticated	will	have	access,	but	will	only	be
able	to	read.

Custom	Data	Access	Patterns	Using	GSIs

One	of	the	most	powerful	things	about	DynamoDB	is	that	it	allows	(at	the
time	of	this	writing)	20	additional	GSIs	per	table.	Using	either	a	GSI	or	a
combination	of	GSI	+	sort	key	(also	think	of	this	as	a	filter	key),	you	are
able	to	create	extremely	flexible	and	powerful	data	access	patterns	for
your	data.	The	GraphQL	Transform	library	also	has	a	directive,	@key,	that
makes	it	simple	to	configure	custom	index	structures	for	@model	types.

We’ll	use	the	@key	directive	to	create	an	access	pattern	that	will	allow	us
to	query	performances	for	a	given	stage	ID	by	setting	the	stage	ID	as	the
GSI	on	the	Performance	table.	Doing	this	will	allow	us	to	be	able	to
request	stages	and	their	corresponding	performances	in	a	single	GraphQL
query.

That	completes	our	skills	overview;	let’s	get	started	building	the	app.

Starting	to	Build	the	App
To	get	started,	we’ll	again	be	walking	through	the	steps	of	creating	a	new
React	project,	installing	dependencies,	initializing	a	new	Amplify	app,	and
adding	features	via	the	CLI.



Change	into	the	directory	where	you	would	like	the	app	to	live,	and	create
a	new	React	project:

~	npx	create-react-app	festivalapp

~	cd	festivalapp

Next,	install	the	dependencies:

~	npm	install	aws-amplify	antd	@aws-amplify/ui-react	react-

router-dom

Creating	the	Amplify	App	and	Adding	the
Features
Next,	initialize	a	new	Amplify	project	in	the	root	of	the	project	directory:

~	amplify	init

#	Follow	the	steps	to	give	the	project	a	name,	environment	name,	

and	set	the

		default	text	editor.

#	Accept	defaults	for	everything	else	and	choose	your	AWS	

Profile.

Now,	the	Amplify	project	has	been	initialized	and	we	can	go	ahead	and
start	adding	features.

Building	the	Backend
The	first	feature	we	will	add	is	authentication.	This	app	will	need	to	have
basic	authentication	but	will	also	need	to	have	the	ability	to	add	admin
users	dynamically	via	a	Lambda	post-confirmation	trigger	like	we	did	in
Chapter	6.	To	enable	this,	we	will	create	the	authentication	service	as	well
as	a	Lambda	trigger	that	will	allow	us	to	add	a	predefined	set	of	users	into
an	Admin	group	as	they	sign	up.



Authentication

To	add	authentication	with	Cognito,	we’ll	again	use	the	auth	category:

~	amplify	add	auth

?	Do	you	want	to	use	the	default	authentication	and	security	

configuration?

		Default	configuration

?	How	do	you	want	users	to	be	able	to	sign	in?	Username

?	Do	you	want	to	configure	advanced	settings?	Yes

?	What	attributes	are	required	for	signing	up?	Email

?	Do	you	want	to	enable	any	of	the	following	capabilities?	Add	

User	to	Group

?	Enter	the	name	of	the	group	to	which	users	will	be	added.	

Admin

?	Do	you	want	to	edit	your	add-to-group	function	now?	Y

Update	the	function	with	the	following	code	and	configure	the
adminEmails	array:

//	amplify/backend/function/<function_name>/src/add-to-group.js

const	aws	=	require('aws-sdk');

exports.handler	=	async	(event,	context,	callback)	=>	{

		const	cognitoProvider	=	new

		aws.CognitoIdentityServiceProvider({

				apiVersion:	'2016-04-18'

		});

		let	isAdmin	=	false

		/*	set	your	admin	emails	here	*/

		const	adminEmails	=	['user1@somedomain.com',	

'user2@somedomain.com']

		//	If	the	user	is	one	of	the	admins,	set	the	isAdmin	variable	

to	true

		if	(adminEmails.indexOf(event.request.userAttributes.email)	

!==	-1)	{

				isAdmin	=	true

		}

		const	groupParams	=	{

				UserPoolId:	event.userPoolId,

		}



		const	userParams	=	{

				UserPoolId:	event.userPoolId,

				Username:	event.userName,

		}

		if	(isAdmin)	{

				groupParams.GroupName	=	'Admin',

				userParams.GroupName	=	'Admin'

				//	First	check	to	see	if	the	groups	exists,	and	if	not	

create	the	group

				try	{

						await	cognitoProvider.getGroup(groupParams).promise();

				}	catch	(e)	{

						await	cognitoProvider.createGroup(groupParams).promise();

				}

				//	If	the	user	is	an	administrator,	place	them	in	the	Admin	

group

				try	{

						await	

cognitoProvider.adminAddUserToGroup(userParams).promise();

						callback(null,	event);

				}	catch	(e)	{

						callback(e);

				}

		}	else	{

				//	If	the	user	is	in	neither	group,	proceed	with	no	action

				callback(null,	event)

		}

}

Now,	the	authentication	service	has	been	set	up	and	we	can	continue	on	to
the	next	step:	creating	the	AppSync	API.

The	AppSync	API

Next,	we’ll	create	the	AppSync	GraphQL	API.	Remember	that	for	this
API,	we	will	need	to	enable	multiple	authentication	types	for	both	public
and	protected	access.	This	can	all	be	enabled	by	the	CLI.

To	add	the	AppSync	API,	we’ll	use	the	api	category:



~	amplify	add	api

?	Please	select	from	one	of	the	below	mentioned	services:	

GraphQL

?	Provide	API	name:	festivalapi

?	Choose	an	authorization	type	for	the	API:	Amazon	Cognito	User	

Pool

Do	you	want	to	configure	advanced	settings	for	the	GraphQL	API:	

Yes

?	Configure	additional	auth	types?	Y

?	Choose	the	additional	authorization	types	you	want	to	

configure	for	the	API:

		API	key

?	Enter	a	description	for	the	API	key:	public	(or	a	custom	

description)

?	After	how	many	days	from	now	the	API	key	should	expire:	365	

(or	a	custom

		expiration	date)

?	Configure	conflict	detection?	N

?	Do	you	have	an	annotated	GraphQL	schema?	N

?	Do	you	want	a	guided	schema	creation?	Y

?	What	best	describes	your	project:	Single	object	with	fields

?	Do	you	want	to	edit	the	schema	now?	Y

This	should	open	the	GraphQL	schema,	located	at
amplify/backend/api/festivalapi/schema.graphql,	in	your	text	editor.

The	schema	we	will	be	using	has	two	main	types,	a	Stage	and	a
Performance.	Use	the	following	schema	and	continue	(we	will	walk
through	how	it	works	in	the	next	step):

type	Stage	@model

		@auth(rules:	[

		{	allow:	public,	operations:	[read]	},

		{	allow:	groups,	groups:	["Admin"]	}

])	{

		id:	ID!

		name:	String!

		performances:	[Performance]	@connection(keyName:	"byStageId",	

fields:	["id"])

}

type	Performance	@model

		@key(name:	"byStageId",	fields:	["performanceStageId"])

		@auth(rules:	[



		{	allow:	public,	operations:	[read]	},

		{	allow:	groups,	groups:	["Admin"]	}

])	{

		id:	ID!

		performanceStageId:	ID!

		productID:	ID

		performer:	String!

		imageUrl:	String

		description:	String!

		time:	String

		stage:	Stage	@connection

}

Let’s	look	at	the	directives	we	used	and	how	they	work.

@AUTH

First,	the	@auth	directive	allows	us	to	pass	in	an	array	of	authorization
rules.	Each	rule	has	an	allow	field	(required)	as	well	as	other	metadata
(optional),	including	things	like	specifying	the	provider	if	it	is	different
than	the	default	authorization	type.

In	the	Stage	and	Performance	type,	we’ve	used	two	authorization
types,	one	for	group	access	(groups)	and	another	for	public	access
(public).	You’ll	notice	that	for	the	public	access,	we’ve	also	set	an	array
of	operations.	This	array	should	contain	a	list	of	the	operations	we	would
like	to	enable	on	the	API.	If	there	are	no	operations	listed,	then	by	default
all	operations	would	be	enabled.

@KEY

The	@key	directive	enables	us	to	add	GSIs	and	sort	keys	to	a	DynamoDB
table	for	custom	data	access	patterns.	In	the	preceding	schema,	we’ve
created	a	key	called	byStageId	that	will	allow	us	to	query	the
Performance	table	for	performances	by	stage	ID	using	a	field	called
performanceStageId	(on	the	Performance	table).	The	resolver



for	the	performances	field	will	then	use	the	ID	of	the	stage	to	query
for	performances	by	stage	ID.

@CONNECTION

The	@connection	directive	allows	us	to	model	relationships	between
types.	Types	of	relationships	that	can	be	created	are	belongs	to,	one	to
many,	many	to	one,	or	many	to	many.	In	this	example,	we’ve	created	two
relationships:

A	relationship	between	a	stage	and	a	performance	(one	stage	has
many	performances)

A	relationship	between	a	performance	and	a	stage	(a	performance
belongs	to	a	stage)

Deploying	the	Services
With	all	of	the	services	configured,	we’re	ready	to	deploy	the	backend:

~	amplify	push

The	services	have	been	deployed	and	we	can	begin	writing	the	client	code.

Building	the	Frontend
Now	that	the	project	has	been	created	and	configured	and	the	backend	has
been	deployed,	we	can	start	setting	up	the	client!

The	first	thing	we	will	do	is	create	the	files	we	will	need	for	this	app:

~	cd	src

~	touch	Container.js	Footer.js	Nav.js	Admin.js	Router.js	

Performance.js	Home.js



The	next	thing	we	will	need	to	do	is	open	src/index.js	to	add	the	Amplify
configuration,	import	the	Ant	Design	styles,	and	replace	the	main
component	with	the	Router	that	we	will	be	creating	soon.	Update	the	file
with	the	following	code:

/*	src/index.js	*/

import	React	from	'react';

import	ReactDOM	from	'react-dom';

import	Router	from	'./Router';

import	'antd/dist/antd.css';

import	Amplify	from	'aws-amplify'

import	config	from	'./aws-exports'

Amplify.configure(config)

ReactDOM.render(<Router	/>,	document.getElementById('root'));

Container

Now,	let’s	create	the	Container	component	that	will	serve	as	a	reusable
component	to	add	padding	and	styling	for	our	views:

/*	src/Container.js	*/

import	React	from	'react'

export	default	function	Container({	children	})	{

		return	(

				<div	style={container}>

						{children}

				</div>

		)

}

const	container	=	{

		padding:	'30px	40px',

		minHeight:	'calc(100vh	-	120px)'

}

Footer

Here,	we’ll	create	the	Footer	component	that	will	serve	as	a	reusable



component	to	add	a	basic	footer,	as	well	as	a	link	for	admins	to	be	able	to
sign	up	and	sign	in:

/*	src/Footer.js	*/

import	React	from	'react'

import	{	Link	}	from	'react-router-dom'

function	Footer()	{

		return	(

				<div	style={footerStyle}>

						<Link	to="/admin">

								Admins

						</Link>

				</div>

		)

}

const	footerStyle	=	{

		borderTop:	'1px	solid	#ddd',

		display:	'flex',

		alignItems:	'center',

		padding:	20

}

export	default	Footer

Nav

Now,	open	src/Nav.js	to	create	the	basic	navigation.	There	will	only	be	one
link:	a	link	back	to	the	main	view	that	will	hold	all	of	the	shows	and
performances:

/*	src/Nav.js	*/

import	React	from	'react'

import	{	Link	}	from	'react-router-dom'

import	{	Menu	}	from	'antd'

import	{	HomeOutlined	}	from	'@ant-design/icons'

const	Nav	=	(props)	=>	{

		const	{	current	}	=	props

		return	(

				<div>

						<Menu	selectedKeys={[current]}	mode="horizontal">

								<Menu.Item	key='home'>



										<Link	to={`/`}>

												<HomeOutlined	/>Home

										</Link>

								</Menu.Item>

						</Menu>

				</div>

		)

}

export	default	Nav

Admin

The	Admin	component	we’ll	create	will	only	do	three	things	for	now:
allow	a	user	to	sign	up,	sign	in,	and	sign	out.	The	idea	for	this	component
is	to	give	admins	a	way	to	sign	up	so	they	can	then	create	and	manage	the
API	as	an	admin.

TIP
Remember,	when	someone	signs	up,	if	their	email	is	enabled	in	the	Lambda	trigger,
they	will	be	placed	in	the	Admin	group	after	signing	up.	They	will	then	be	able	to
perform	mutations	to	create,	update,	and	delete	stages	and	performances.

If	you	ever	need	to	update	your	backend	code	like	the	GraphQL	schema	or
Lambda	function,	you	can	make	the	changes	locally,	then	run	amplify
push	to	deploy	the	changes	to	the	backend:

/*	src/Admin.js	*/

import	React	from	'react'

import	{	withAuthenticator,	AmplifySignOut	}	from	'@aws-

amplify/ui-react'

import	{	Auth	}	from	'aws-amplify'

import	{	Button	}	from	'antd'

function	Admin()	{

		return	(

				<div>

						<h1	style={titleStyle}>Admin</h1>



						<AmplifySignOut	/>

				</div>

		)

}

const	titleStyle	=	{

		fontWeight:	'normal',

		margin:	'0px	0px	10px	0px'

}

export	default	withAuthenticator(Admin)

Router

Now	let’s	create	the	Router:

/*	src/Router.js	*/

import	React,	{	useState,	useEffect	}	from	'react'

import	{	HashRouter,	Switch,	Route	}	from	'react-router-dom'

import	Home	from	'./Home'

import	Admin	from	'./Admin'

import	Nav	from	'./Nav'

import	Footer	from	'./Footer'

import	Container	from	'./Container'

import	Performance	from	'./Performance'

const	Router	=	()	=>	{

		const	[current,	setCurrent]	=	useState('home')

		useEffect(()	=>	{

				setRoute()

				window.addEventListener('hashchange',	setRoute)

				return	()	=>		window.removeEventListener('hashchange',	

setRoute)

		},	[])

		function	setRoute()	{

				const	location	=	window.location.href.split('/')

				const	pathname	=	location[location.length-1]

				setCurrent(pathname	?	pathname	:	'home')

		}

		return	(

				<HashRouter>

						<Nav	current={current}	/>

						<Container>

								<Switch>

										<Route	exact	path="/"	component={Home}/>

										<Route	exact	path="/performance/:id"	component=



{Performance}	/>

										<Route	exact	path="/admin"	component={Admin}/>

								</Switch>

						</Container>

						<Footer	/>

				</HashRouter>

		)

}

export	default	Router

In	this	component,	we	combine	the	router	with	the	persistent	UI
components	like	the	Container	and	Footer.

The	app	has	three	routes:

Home

This	is	the	main	route	that	will	render	the	stages	and	performances.

Performance

This	is	this	is	the	route	that	will	render	an	individual	performance	and
details	around	the	performance.

Admin

This	is	the	route	that	will	render	the	sign-up/sign-in	page	for	admins.

In	the	Performance	route,	you	will	see	that	we	are	using	a	path	that	looks
like	this:

/performance/:id

Doing	this	allows	us	to	have	URL	parameters,	so	if	we	hit	a	route	like	this,
we	will	be	able	to	easily	extract	the	ID	from	the	URL:

/performance/100



Hitting	a	route	with	URL	parameters	will	allow	us	to	access	them	in	the
component	itself.	This	is	useful	because	we	will	be	using	the	ID	of	the
performance	to	fetch	the	performance	details,	and	having	them	easily
accessible	in	the	route	parameters	enables	this.	It	also	enables	you	to
easily	build	apps	that	support	deep	linking.

Performance

Next,	let’s	create	the	Performance	component:

/*	src/Performance.js	*/

import	React,	{	useState,	useEffect	}	from	'react'

import	{	useParams	}	from	'react-router-dom'

import	{	getPerformance	}	from	'./graphql/queries'

import	{	API	}	from	'aws-amplify'

function	Performance()	{

		const	[performance,	setPerformance]	=	useState(null)

		const	[loading,	setLoading]	=	useState(true)

		let	{	id	}	=	useParams()

		useEffect(()	=>	{

				fetchPerformanceInfo()

		},	[])

		async	function	fetchPerformanceInfo()	{

				try	{

						const	talkInfo	=	await	API.graphql({

								query:	getPerformance,

								variables:	{	id	},

								authMode:	'API_KEY'

						})

						setPerformance(talkInfo.data.getPerformance)

						setLoading(false)

				}	catch	(err)	{

						console.log('error	fetching	talk	info...',	err)

						setLoading(false)

				}

		}

		return	(

				<div>

						<p>Performance</p>

						{	loading	&&	<h3>Loading...</h3>}

						{



								performance	&&	(

										<div>

												<h1>{performance.performer}</h1>

												<h3>{performance.time}</h3>

												<p>{performance.description}</p>

										</div>

								)

						}

				</div>

		)

}

export	default	Performance

The	render	method	of	this	component	is	pretty	basic;	it’s	just	rendering	the
performance	performer,	time,	and	description.	What	is
interesting	about	this	component	is	how	we	get	that	information.	We	do	so
with	the	following	flow:

1.	 We	create	two	pieces	of	state	using	the	useState	hook:
loading	(set	to	true)	and	performance	(set	to	null).	We	also
create	a	variable	called	id	that	uses	the	useParams	helper	from
React	Router	to	get	the	route	parameter	of	id.

2.	 When	the	component	loads,	we	use	the	useEffect	hook	to
immediately	call	the	fetchPerformanceInfo	function.

3.	 The	fetchPerformanceInfo	function	will	use	the	id	from
the	route	params	to	call	the	AppSync	API.	The	API	call	here	uses
API.graphql,	passing	in	the	variables,	query,	and	the
authMode.	By	default,	our	API	is	using	Cognito	User	Pools	as
the	auth	mode.	Any	time	we	would	like	to	override	this,	like	in
this	case	to	make	a	public	API	call,	we	need	to	specify	the
authMode	in	the	API	call	itself.

4.	 Once	the	data	is	returned	from	the	API,	we	call	setLoading
and	setPerformance	to	update	the	UI	and	render	the	data
coming	back	from	the	API.



Home

Now,	let’s	create	the	last	component,	the	Home	component:

/*	src/Home.js	*/

import	React,	{	useEffect,	useState	}	from	'react'

import	{	API	}	from	'aws-amplify'

import	{	listStages	}	from	'./graphql/queries'

import	{	Link	}	from	'react-router-dom'

import	{	List	}	from	'antd';

function	Home()	{

		const	[stages,	setStages]	=	useState([])

		const	[loading,	setLoading]	=	useState(true)

		useEffect(()	=>	{

				getStages()

		},	[])

		async	function	getStages()	{

				const	apiData	=	await	API.graphql({

						query:	listStages,

						authMode:	'API_KEY'

				})

				const	{	data:	{	listStages:	{	items	}}}	=	apiData

				setLoading(false)

				setStages(items)

		}

		return	(

				<div>

					<h1	style={heading}>Stages</h1>

						{	loading	&&	<h2>Loading...</h2>}

						{

								stages.map(stage	=>	(

										<div	key={stage.id}	style={stageInfo}>

												<p	style={infoHeading}>{stage.name}</p>

												<p	style={infoTitle}>Performances</p>

												<List

														itemLayout="horizontal"

														dataSource={stage.performances.items}

														renderItem={performance	=>	(

																<List.Item>

																		<List.Item.Meta

																			title={<Link	style={performerInfo}

																			to={`/performance/${

																									performance.id}`}>{

																									performance.performer}</Link>

																			}

																			description={performance.time}



																		/>

																</List.Item>

														)}

												/>

										</div>

								))

						}

				</div>

		)

}

const	heading	=	{	fontSize:	44,	fontWeight:	300,	marginBottom:	5	

}

const	stageInfo	=	{	padding:	'20px	0px	10px',	borderBottom:	'2px	

solid	#ddd'	}

const	infoTitle	=	{	fontWeight:	'bold'	,	fontSize:	18	}

const	infoHeading	=	{	fontSize:	30,	marginBottom:	5	}

const	performerInfo	=	{	fontSize:	24	}

export	default	Home

The	logic	in	this	component	is	actually	very	similar	to	what	we	did	in	the
Performance	component:

1.	 Create	two	main	pieces	of	state	using	the	useState	hook:
stages	(set	to	an	empty	array),	and	loading	(set	to	true).

2.	 When	the	app	loads,	we	use	the	API	class	with	a	custom
authMode	of	API_KEY	to	call	the	AppSync	API.

3.	 When	the	data	comes	back	from	the	API,	set	the	state	for	the
stages	and	set	loading	to	false.

Now,	the	app	is	finished,	but	there’s	just	one	more	thing.	Because	we	have
created	a	custom	access	pattern	for	the	performances	resolver,	we	need	to
update	the	listStages	query	definition	to	also	return	the	performances.
To	do	this,	update	the	listStages	query	with	the	following:

/*	src/graphql/queries.js	*/

export	const	listStages	=	/*	GraphQL	*/	`

		query	ListStages(



				$filter:	ModelStageFilterInput

				$nextToken:	String

		)	{

				listStages(filter:	$filter,	limit:	500,	nextToken:	

$nextToken)	{

						items	{

								id

								name

								performances	{

										items	{

												id

												time

												performer

												description

										}

								}

						}

						nextToken

				}

		}

`;

Now,	the	app	is	completed	and	we	can	populate	some	data.	Start	the	app
and	sign	up	with	an	admin	user:

~	npm	start

Click	the	Admins	link	in	the	footer	to	sign	up.	Once	you’ve	signed	up,
open	the	AppSync	console:

~	amplify	console	api

>	Choose	GraphQL

In	the	Queries	panel	of	the	console,	you	will	need	to	click	Login	with	User
Pools	to	sign	in	using	the	username	and	password	of	the	user	you	just
created.	When	prompted	for	the	ClientID,	use	the
aws_user_pools_web_client_id	located	in	the	aws-exports.js
file	of	your	local	project.



Next,	create	at	least	one	stage	and	one	performance:

mutation	createStage	{

		createStage(input:	{

				id:	"stage-1"

				name:	"Stage	1"

		})	{

				id	name

		}

}

mutation	createPerformance	{

		createPerformance(input:	{

				performanceStageId:	"stage-1"

				performer:	"Dreek"

				description:	"Dreek	LIVE	in	NYC!	Don't	miss	out,	performing

																		all	of	the	hits	with	a	few	surprise	

performances!"

				time:	"Monday,	May	4	2022"

		})	{

				id	performer	description

		}

}

Now,	our	database	has	some	data,	and	we	should	be	able	to	view	it	in	our
app	and	navigate	between	the	main	view	and	the	detail	view	for	each
performance!

Summary
Here	are	a	few	things	to	keep	in	mind	from	this	chapter:

The	GraphQL	Transform	directive	enables	you	to	add	powerful
features	to	your	GraphQL	API	like	authorization	rules,
relationships,	and	custom	indexes	for	additional	data	access
patterns.

The	@auth	directive	allows	you	to	pass	in	an	array	of	rules	to
define	authorization	rules	on	types	and	fields.

The	@connection	directive	enables	you	to	model	relationships



between	GraphQL	types.

The	@key	directive	enables	you	to	define	custom	indexes	for
custom	data	access	patterns	and	to	enhance	existing	relationships.

When	creating	an	API	with	multiple	authorization	types,	you	will
have	a	Primary	authorization	type	that	will	be	the	default	when
making	API	calls.	Whenever	you	need	to	override	the	Primary
authorization	type,	you	must	pass	in	the	authMode	parameter	to
the	API	class	defining	the	authorization	type	you	would	like	to
use.



Chapter	9.	Building	Offline
Apps	with	Amplify	DataStore

So	far	in	this	book,	we’ve	worked	with	REST	APIs	and	GraphQL	APIs.
When	working	with	the	GraphQL	APIs,	we	used	the	API	class	to	directly
call	mutations	and	queries	against	the	API.

Amplify	also	supports	another	type	of	API	for	interacting	with	AppSync:
Amplify	DataStore.	DataStore	has	a	different	approach	than	a	traditional
GraphQL	API.

Instead	of	interacting	with	the	GraphQL	API	itself,	using	queries	and
mutations,	DataStore	introduces	a	client-side	SDK	that	allows	you	to	write
to	and	read	from	a	local	store	and	persists	this	data	locally	using	the	local
storage	engine	of	the	platform	you	are	working	with	(i.e.,	IndexDB	for
web	and	SQLite	for	native	iOS	and	Android).	DataStore	then
automatically	syncs	the	local	data	to	the	GraphQL	backend	for	you	as
updates	are	made	both	locally	and	remotely.

Using	the	DataStore	SDK,	you	then	only	have	to	perform	the	operations
like	save,	update,	and	delete,	writing	directly	to	DataStore	itself.	DataStore
handles	everything	else	for	you:	it	syncs	your	data	to	the	cloud	when	you
have	an	internet	connection,	and	if	you’re	not	online,	will	queue	it	for	the
next	time	you’re	connected.

DataStore	also	handles	conflict	detection	and	resolution	for	you	with	one
of	three	built-in	conflict-resolution	strategies:



AutoMerge

GraphQL	type	information	on	an	object	is	inspected	at	runtime	to
perform	merge	operations	(suggested	option).

Optimistic	concurrency

The	latest	written	item	to	your	database	will	be	used	with	a	version
check	against	the	incoming	record.

Custom

Use	a	Lambda	function	and	write	any	custom	business	logic	you	wish
to	the	process	when	merging	or	rejecting	updates.

About	Amplify	DataStore
Amplify	DataStore	is	a	combination	of	the	following	things:

AppSync	GraphQL	API

Local	storage	repository	and	syncing	engine	that	also	persists	data
offline

Client-side	SDK	for	interacting	with	the	local	storage	repository

Special	sync-enabled	GraphQL	resolvers	(generated	by	the
Amplify	CLI)	that	enable	sophisticated	conflict	detection	and
conflict	resolution	on	the	server

Amplify	DataStore	Overview

When	getting	started	with	DataStore,	you	still	create	the	API	as	we	have
done	in	past	chapters.	The	main	difference	is,	when	creating	the	API,	you
will	enable	conflict	detection	in	the	advanced	settings	of	the	CLI	flow.

From	there,	to	enable	DataStore	on	the	client,	we	need	to	create	models

https://oreil.ly/Wv_TT


for	DataStore	to	use	to	interact	with	the	storage	repository.	This	can	easily
be	done	by	just	using	the	GraphQL	schema	you	already	have	and	running
a	build	command—amplify	codegen	models—from	the	CLI.

Now,	you	are	all	set	up	and	can	begin	interacting	with	DataStore.

Amplify	DataStore	Operations

To	interact	with	the	Store,	first	import	the	DataStore	API	from	Amplify
and	the	Model	you’d	like	to	use.	From	there,	you	can	perform	actions
against	the	store.

See	Table	9-1	for	some	available	operations.

Table	9-1.	Amplify	DataStore	Operations

Operation Commands

Import	the	model	and	DataStore	
API

import	{	DataStore	}	from	'@aws-amp

lify/datastore'

import	{	Message}	from	'./models'

Saving	data await	DataStore.save(

		new	Message({

				title:	'Hello	World',

				sender:	'Chris'

		})

))

Reading	data const	posts	=	await	DataStore.query

(Post)

Deleting	data const	message	=	await	DataStore.que

ry(Message,	'123')

DataStore.delete(message)

Updating	data const	message	=	await	DataStore.que

ry(Message,	'123')

await	DataStore.save(

	 Post.copyOf(message,	update



d	=>	{

	 	 updated.title	=	'My

	new	title'

	 })

)

Observing/subscribing	to	changes	
in	data	for	real-time	functionality

const	subscription	=	DataStore.obse

rve(Message).subscribe(msg	=>	{

		console.log(message.model,	messag

e.opType,	message.element)

});

DataStore	Predicates

You	can	apply	predicate	filters	against	the	DataStore	using	the	fields
defined	on	your	GraphQL	type	along	with	the	following	conditions
supported	by	DynamoDB:

Strings:	eq	|	ne	|	le	|	lt	|	ge	|	gt	|	contains	|	notContains	|	

beginsWith

												|	between

Numbers:	eq	|	ne	|	le	|	lt	|	ge	|	gt	|	between

Lists:	contains	|	notContains

For	example,	if	you	wanted	a	list	of	all	messages	that	have	a	title	that
includes	“Hello”:

const	messages	=	await	DataStore

		.query(Message,	m	=>

m.title('contains',	'Hello'))

You	can	also	chain	multiple	predicates	into	a	single	operation:

const	message	=	await	DataStore

		.query(Message,	m	=>	m.title('contains',	'Hello').sender('eq',	

'Chris'))

These	predicates	enable	you	to	have	many	ways	to	retrieve	different
selection	sets	from	your	local	data.	Instead	of	retrieving	the	entire



collection	and	filtering	on	the	client,	you	are	able	to	query	from	the	store
exactly	the	data	that	you	need.

Building	an	Offline	and	Real-Time	App	with
Amplify	DataStore
The	app	that	we	will	build	is	a	real-time	and	offline-first	message	board,
as	shown	in	Figure	9-1.





Figure	9-1.	Real-time	message	board

Users	of	the	app	can	create	a	new	message	and	all	other	users	will	receive
the	message	in	real	time.	If	a	user	goes	offline,	they	will	continue	to	be
able	to	create	messages.	Once	they	are	online,	the	messages	will	be	synced
with	the	backend,	and	all	other	messages	created	by	other	users	will	also
be	fetched	and	synced	locally.

Our	app	will	perform	three	types	of	operations	against	the	DataStore	API:

save

Creating	a	new	item	in	the	DataStore;	saves	the	item	locally	and
performs	a	GraphQL	mutation	behind	the	scenes.

query

Reading	from	the	DataStore;	returns	a	single	item	or	list	(array)	and
performs	a	GraphQL	query	behind	the	scenes.

observe

Listening	for	changes	(create,	update,	delete)	in	data	and	performs	a
GraphQL	subscription	behind	the	scenes.

Let’s	get	started.

Creating	the	Base	Project

To	get	started,	we	will	create	a	new	React	project,	initialize	an	Amplify
app,	and	install	the	dependencies.

The	first	thing	we	will	do	is	create	the	React	project:

~	npx	create-react-app	rtmessageboard

~	cd	rtmessageboard



Next,	we	will	install	the	local	dependencies.

Amplify	supports	a	full	installation	of	Amplify,	and	scoped	(modular)
installations	for	specific	APIs.	Scoped	packages	reduce	the	bundle	size,
since	we’re	installing	only	the	code	that	we	are	using.	Since	we	are	only
using	the	DataStore	API,	we	can	install	the	scoped	DataStore	package.

We	will	also	install	Ant	Design	(antd)	for	styling,	React	Color	(react-
color)	for	an	easy-to-use	color	picker,	and	the	scoped	dependency	for
Amplify	Core	in	order	to	still	configure	the	Amplify	app	with	aws-
exports.js:

~	npm	install	@aws-amplify/core	@aws-amplify/datastore	antd	

react-color

Next,	initialize	a	new	Amplify	project:

~	amplify	init

#	Follow	the	steps	to	give	the	project	a	name,	environment	name,	

and	set	the

		default	text	editor.

#	Accept	defaults	for	everything	else	and	choose	your	AWS	

Profile.

Creating	the	API

Now	we	will	create	the	AppSync	GraphQL	API:

~	amplify	add	api

?	Please	select	from	one	of	the	below	mentioned	services:	

GraphQL

?	Provide	API	name:	rtmessageboard

?	Choose	the	default	authorization	type	for	the	API:	API	key

?	Enter	a	description	for	the	API	key:	public

?	After	how	many	days	from	now	the	API	key	should	expire	(1-

365):	365	(or	your

		preferred	expiration)



?	Do	you	want	to	configure	advanced	settings	for	the	GraphQL	

API:	Yes

?	Configure	additional	auth	types:	N

?	Configure	conflict	detection:	Y

?	Select	the	default	resolution	strategy:	Auto	Merge

?	Do	you	have	an	annotated	GraphQL	schema:	N

?	Do	you	want	a	guided	schema	creation:	Y

?	What	best	describes	your	project:	Single	object	with	fields

?	Do	you	want	to	edit	the	schema	now:	Y

Update	the	schema	with	the	following	type:

type	Message	@model	{

		id:	ID!

		title:	String!

		color:	String

		image:	String

		createdAt:	String

}

Now	that	we	have	created	the	GraphQL	API,	and	we	have	a	GraphQL
schema	to	work	with,	we	can	create	the	models	we’ll	need	for	working	the
local	DataStore	API	(based	on	the	GraphQL	schema):

~	amplify	codegen	models

This	will	create	a	new	folder	in	our	project	called	models.	Using	the
models	in	this	folder,	we	can	start	interacting	with	the	DataStore	API.
Deploy	the	API:

~	amplify	push	--y

With	the	backend	deployed,	we	can	start	writing	the	client-side	code.

Writing	the	Client-Side	Code

First,	open	src/index.js	and	configure	the	Amplify	app	by	adding	the
following	code	below	the	last	import:



import	'antd/dist/antd.css'

import	Amplify	from	'@aws-amplify/core'

import	config	from	'./aws-exports'

Amplify.configure(config)

Notice	that	we	are	importing	from	@aws-amplify/core	instead	of
aws-amplify.

Next,	open	App.js	and	update	it	with	the	following	code:

/*	src/App.js	*/

import	React,	{	useState,	useEffect	}	from	'react'

import	{	SketchPicker	}	from	'react-color'

import	{	Input,	Button	}	from	'antd'

import	{	DataStore	}	from	'@aws-amplify/datastore'

import	{	Message}	from	'./models'

const	initialState	=	{	color:	'#000000',	title:	''	}

function	App()	{

		const	[formState,	updateFormState]	=	useState(initialState)

		const	[messages,	updateMessages]	=	useState([])

		const	[showPicker,	updateShowPicker]	=	useState(false)

		useEffect(()	=>	{

				fetchMessages()

				const	subscription	=	DataStore

						.observe(Message)

						.subscribe(()	=>	fetchMessages())

				return	()	=>	subscription.unsubscribe()

		},	[])

		async	function	fetchMessages()	{

				const	messages	=	await	DataStore.query(Message)

				updateMessages(messages)

		}

		function	onChange(e)	{

				if	(e.hex)	{

						updateFormState({	...formState,	color:	e.hex})

				}	else	{	updateFormState({	...formState,	[e.target.name]:	

e.target.value})	}

		}

		async	function	createMessage()	{

				if	(!formState.title)	return

				await	DataStore.save(new	Message({	...formState	}))

				updateFormState(initialState)

		}

		return	(

				<div	style={container}>



						<h1	style={heading}>Real	Time	Message	Board</h1>

						<Input

								onChange={onChange}

								name="title"

								placeholder="Message	title"

								value={formState.title}

								style={input}

						/>

						<div>

								<Button

								onClick={()	=>	updateShowPicker(!showPicker)}

								style={button}

								>Toggle	Color	Picker</Button>

								<p>Color:

										<span

											style={{fontWeight:	'bold',	color:	formState.color}}>

{formState.color}

										</span>

								</p>

						</div>

						{

								showPicker	&&	(

										<SketchPicker

											color={formState.color}

											onChange={onChange}	/

										>

								)

						}

						<Button	type="primary"	onClick={createMessage}>Create	

Message</Button>

						{

								messages.map(message	=>	(

										<div

												key={message.id}

												style={{...messageStyle,	backgroundColor:	

message.color}}

										>

												<div	style={messageBg}>

														<p	style={messageTitle}>{message.title}</p>

												</div>

										</div>

								))

						}

				</div>

		);

}

const	container	=	{	width:	'100%',	padding:	40,	maxWidth:	900	}

const	input	=	{	marginBottom:	10	}

const	button	=	{	marginBottom:	10	}



const	heading	=	{	fontWeight:	'normal',	fontSize:	40	}

const	messageBg	=	{	backgroundColor:	'white'	}

const	messageStyle	=	{	padding:	'20px',	marginTop:	7,	

borderRadius:	4	}

const	messageTitle	=	{	margin:	0,	padding:	9,	fontSize:	20		}

export	default	App

Let’s	walk	through	the	most	important	parts	of	what’s	going	on	in	this
component:

1.	 We	import	the	DataStore	API	from	Amplify	as	well	as	the
Message	model.

2.	 We	create	three	pieces	of	component	state	using	the	useState
hook:

formState

This	object	manages	the	state	for	the	form,	including	the
title	and	color	that	will	be	used	to	display	the
background	color	of	the	message.

messages

This	will	manage	the	array	of	messages	once	they	are	fetched
from	DataStore.

showPicker

This	will	manage	a	Boolean	value	that	will	be	toggled	to
show	and	hide	a	color	picker	to	fill	the	color	value	for	the
message	(by	default,	the	color	is	set	to	black	and	held	in	the
formState).

3.	 When	the	component	loads	(in	useEffect),	we	fetch	all
messages	by	invoking	the	fetchMessages	function	and	create
a	subscription	(DataStore.observe)	to	listen	to	message
updates.	When	a	subscription	is	fired,	we	again	invoke	the
fetchMessages	function	because	we	know	there	has	been	an



update	and	we	would	like	to	update	the	app	with	the	most	recent
data	coming	back	from	the	API.

4.	 The	fetchMessages	function	calls	DataStore.query	and
then	updates	the	component	state	with	the	returned	array	of
messages.

5.	 The	onChange	handler	handles	the	updates	to	the	form	input	as
well	as	the	color	picker	being	changed.

6.	 In	createMessage,	we	first	check	to	make	sure	the	title	field
is	populated.	If	it	is,	we	save	the	message	using
DataStore.save	and	then	reset	the	form	state.

Let’s	test	it	out:

~	npm	start

Testing	the	Offline	Functionality

Try	going	offline,	creating	a	new	mutation,	and	then	coming	back	online.
You	should	notice	that,	when	back	online,	the	app	takes	all	of	the
messages	created	when	you	were	offline	and	creates	them	in	the	database.

To	verify	this,	open	the	AppSync	API	in	the	AWS	Console:

~	amplify	console	api

?	Please	select	from	one	of	the	below	mentioned	services:	

GraphQL

Next,	click	Data	Sources	and	then	open	the	Message	Table	resource.	You
should	now	see	the	items	in	the	Message	Table.

Testing	the	Real-Time	Functionality

To	test	out	the	real-time	functionality,	open	another	browser	window	so



that	you	have	two	windows	running	the	same	app.	Then	create	a	new	item
in	one	window	and	see	the	update	come	through	automatically	in	the	other
window.

Summary
Here	are	a	few	things	to	keep	in	mind	from	this	chapter:

Amplify	enables	two	different	APIs	to	interact	with	AppSync:	the
API	category	as	well	as	DataStore.

When	using	DataStore,	you	are	no	longer	sending	HTTP	requests
directly	to	the	API.	Instead,	you	are	writing	to	the	local	storage
engine,	and	DataStore	then	takes	care	of	syncing	to	and	from	the
cloud.

Amplify	DataStore	works	offline	by	default.



Chapter	10.	Working	with
Images	and	Storage

Many	applications	need	to	have	a	way	to	manage	file,	image,	and	video
storage.	While	it’s	possible	to	transform	these	objects	into	binary	data	and
store	them	directly	in	your	database,	it’s	usually	better	not	to.	Instead,
using	a	managed	file-hosting	service	like	Amazon	S3	is	better	because	it’s
less	expensive,	faster,	and	just	as	secure.

In	this	chapter,	we’ll	look	at	how	to	create	a	photo-sharing	app	that	renders
posts	with	photos	in	a	stream	in	real	time,	allowing	you	to	share	an	image
along	with	a	caption	for	the	image.

Using	Amazon	S3
Amazon	S3	allows	you	to	have	secure	file	hosting	that	scales	as	you	need
it.	Amplify	uses	S3	as	the	Storage	category	for	handling	the	storage	of
files	like	images,	videos,	PDFs,	and	more.

When	working	with	S3,	you	typically	will	have	three	types	of	file	access
available:

Public

Items	stored	with	public	access	will	be	accessible	by	all	users	of	your
app.	These	files	are	stored	under	the	public/	path	in	your	S3	bucket.
Public	does	not	mean	that	anyone	with	the	URL	of	the	resource	can
view	it,	though.	In	order	to	be	viewed,	you	must	use	the	Amplify	SDK



to	retrieve	a	temporarily	signed	URL	of	the	resource.	This	signed	URL
will	be	set	to	expire	after	a	set	period	of	time	(15	minutes	by	default).

Private

Items	are	readable	by	all	users,	but	writable	only	by	the	creating	user.
In	S3,	the	files	are	stored	under	the	path	private/{user_identity_id},
where	the	user_identity_id	corresponds	to	the	unique	Amazon	Cognito
ID	for	that	user.

Protected

These	files	are	only	accessible	for	the	individual	user.	Files	are	stored
under	the	path	private/{user_identity_id}	where	the	user_identity_id
corresponds	to	the	unique	Amazon	Cognito	ID	for	that	user.

By	default,	when	storing	a	file,	it	will	be	set	to	public	unless	otherwise
specified:

await	Storage.put('test.txt',	'Hello')

If	you	would	like	to	specify	either	private	or	protected	access,	you
need	to	specify	the	level	when	saving:

/*	Private	level	access	*/

await	Storage.put('test.txt',	'Private	Content',	{

		level:	'private',

		contentType:	'text/plain'

})

/*	Protected	level	access	*/

await	Storage.put('test.txt',	'Protected	Content',	{

		level:	'protected',

		contentType:	'text/plain'

})

The	storage	category	uses	Amazon	S3	to	store	file	types	including	images,
PDFs,	video,	text	files,	and	more.



To	put	this	all	together,	we’ll	use	a	combination	of	a	GraphQL	API	along
with	Amazon	S3	to	work	as	the	backend	for	the	app.	The	GraphQL
schema	will	hold	the	fields	for	the	image	title,	the	image	key	stored	in	S3,
and	the	unique	ID.

Let’s	take	a	look	at	the	schema	we	will	be	using:

type	Post	@model	{

		id:	ID!

		title:	String!

		imageKey:	String!

}

When	creating	a	new	post,	there	are	two	operations	that	will	need	to
happen:

The	image	is	given	a	unique	key	and	stored	in	the	S3	bucket.

The	post	metadata,	including	the	image	key,	is	stored	in	the
GraphQL	API.

When	reading	posts,	this	will	be	the	sequence	of	events:

1.	 GraphQL	query	to	read	a	list	of	posts	from	the	GraphQL	API.

2.	 Map	over	the	posts	array,	getting	a	signed	URL	for	each	image	in
the	list	of	posts.

3.	 Render	the	posts	using	the	signed	URL	for	the	image	as	the	image
source.

The	example	we	will	build	in	this	chapter	implements	a	very	common	and
useful	pattern	for	building	applications	that	rely	on	a	combination	of	an
API	with	references	to	large	objects,	such	as	images,	videos,	and	files	in
general	that	are	stored	in	S3.



Creating	the	Base	Project

To	get	started,	we	will	create	a	new	React	project,	initialize	an	Amplify
app,	and	install	the	dependencies.

The	first	thing	we	will	do	is	create	the	React	project:

~	npx	create-react-app	photo-app

~	cd	photo-app

Next,	we	will	install	the	local	dependencies.	This	project	will	use	Ant
Design	for	styling	(antd),	the	UUID	package	for	creating	unique
identifiers	(uuid)	along	with	the	AWS	Amplify	and	AWS	Amplify	React
packages:

~	npm	install	antd	uuid	aws-amplify	@aws-amplify/ui-react

Next,	initialize	a	new	Amplify	project:

~	amplify	init

#	Follow	the	steps	to	give	the	project	a	name,	environment	name,	

and	set	the

		default	text	editor.

#	Accept	defaults	for	everything	else	and	choose	your	AWS	

Profile.

Adding	Authentication

Next,	add	authentication	using	the	auth	category:

~	amplify	add	auth

?	Do	you	want	to	use	the	default	authentication	and	security	

configuration?

		Default	configuration

?	How	do	you	want	users	to	be	able	to	sign	in?	Username

?	Do	you	want	to	configure	advanced	settings?	No,	I	am	done.



Creating	the	API

Next,	we	will	create	the	AppSync	GraphQL	API:

~	amplify	add	api

?	Please	select	from	one	of	the	below	mentioned	services:	

GraphQL

?	Provide	API	name:	photoapp

?	Choose	an	authorization	type	for	the	API:	Amazon	Cognito	User	

Pool

?	Do	you	want	to	configure	advanced	settings	for	the	API?	No

?	Do	you	have	an	annotated	GraphQL	schema?	N

?	Do	you	want	a	guided	schema	creation?	Y

?	What	best	describes	your	project:	Single	object	with	fields

?	Do	you	want	to	edit	the	schema	now?	Yes

For	the	GraphQL	schema,	use	the	following:

type	Post	@model	{

		id:	ID!

		title:	String!

		imageKey:	String!

}

Finally,	we	will	add	storage	using	the	storage	category:

~	amplify	add	storage

?	Please	select	from	one	of	the	below	mentioned	services:	

Content

?	Please	provide	a	friendly	name	for	your	resource	that	will	be	

used	to	label

		this	category	in	the	project:	photos

?	Please	provide	bucket	name:	<your_unique_bucket_name>

?	Who	should	have	access:	Auth	users	only

?	What	kind	of	access	do	you	want	for	Authenticated	users?	

Choose	all

		(create	/	update,	read,	&	delete)

?	Do	you	want	to	add	a	Lambda	Trigger	for	your	S3	Bucket?	N

Now	services	have	been	configured	and	they	are	ready	to	be	deployed:

~	amplify	push



Now	that	the	backend	has	been	deployed,	we	can	start	writing	the	client-
side	code.

Writing	the	Client-Side	Code

First,	open	src/index.js	and	configure	the	Amplify	app	by	adding	the
following	code	below	the	last	import:

import	'antd/dist/antd.css'

import	Amplify	from	'aws-amplify'

import	config	from	'./aws-exports'

Amplify.configure(config)

This	app	will	have	two	views:	one	view	for	listing	posts	and	one	view	for
creating	posts.	Let’s	next	create	two	new	components	for	these	views	in
the	src	directory:

~	cd	src

~	touch	Posts.js	CreatePost.js

~	cd	..

Next,	open	src/App.js	and	update	it	with	the	following	code:

/*	src/App.js	*/

import	React,	{	useState	}	from	'react';

import	{	Radio	}	from	'antd'

import	{	withAuthenticator,	AmplifySignOut	}	from	'@aws-

amplify/ui-react'

import	Posts	from	'./Posts'

import	CreatePost	from	'./CreatePost'

function	App()	{

		const	[viewState,	updateViewState]	=	useState('viewPosts')

		return	(

				<div	style={container}>

						<h1>Photo	App</h1>

						<Radio.Group

								value={viewState}

								onChange={e	=>	updateViewState(e.target.value)}

						>



								<Radio.Button	value="viewPosts">View	

Posts</Radio.Button>

								<Radio.Button	value="addPost">Add	Post</Radio.Button>

						</Radio.Group>

						{

								viewState	===	'viewPosts'	?	(

										<Posts	/>

								)	:	(

										<CreatePost	updateViewState={updateViewState}	/>

								)

						}

						<AmplifySignOut	/>

				</div>

		);

}

const	container	=	{	width:	500,	margin:	'0	auto',	padding:	50	}

export	default	withAuthenticator(App);

This	component	imports	the	Posts	and	CreatePost	components	and
renders	one	of	them	based	on	the	viewState	component	state.

To	create	the	viewState,	we	used	the	useState	hook.	To	toggle	the
value	of	viewState,	we	render	a	radio	group	from	Ant	Design	that
renders	a	button	for	either	viewing	posts	(View	Posts)	or	adding	a	new
post	(Add	Post).

Next,	open	src/CreatePost.js	and	update	it	with	the	following	code:

/*	src/CreatePost.js	*/

import	React,	{	useState	}	from	'react';

import	{	Button,	Input	}	from	'antd'

import	{	v4	as	uuid	}	from	'uuid'

import	{	createPost	}	from	'./graphql/mutations'

import	{	API,	graphqlOperation,	Storage	}	from	'aws-amplify'

const	initialFormState	=	{

		title:	'',

		image:	{}

}

function	CreatePost({	updateViewState	})	{



		const	[formState,	updateFormState]	=	

useState(initialFormState)

		function	onChange(key,	value)	{

				updateFormState({	...formState,	[key]:	value	})

		}

		function	setPhoto(e)	{

				if	(!e.target.files[0])	return

				const	file	=	e.target.files[0]

				updateFormState({	...formState,	image:	file	})

		}

		async	function	savePhoto()	{

				const	{	title,	image	}	=	formState

				if	(!title	||	!image.name	)	return

				const	imageKey	=

						uuid()	+	formState.image.name.replace(/\s/g,	'-

').toLowerCase()

				await	Storage.put(imageKey,	formState.image)

				const	post	=	{	title,	imageKey	}

				await	API.graphql(graphqlOperation(createPost,	{	input:	post	

}))

				updateViewState('viewPosts')

		}

		return	(

				<div>

						<h2	style={heading}>Add	Photo</h2>

						<Input

								onChange={e	=>	onChange('title',	e.target.value)}

								style={withMargin}

								placeholder="Title"

						/>

						<input

								type='file'

								onChange={setPhoto}

								style={button}

						/>

						<Button

							style={button}

							type="primary"

							onClick={savePhoto}

						>

						Save	Photo</Button>

				</div>

		);

}



const	heading	=	{	margin:	'20px	0px'	}

const	withMargin	=	{	marginTop:	10	}

const	button	=	{	marginTop:	10	}

export	default	CreatePost

ABOUT	THIS	COMPONENT

In	this	component,	we	allow	users	to	upload	an	image	and	create	a	new
post	with	the	image	and	a	title:

1.	 The	state	that	this	component	holds	is	stored	in	the	formState
object,	created	using	the	useState	hook.	This	object	holds	the
post	title	as	well	as	the	post	image.

2.	 onChange	updates	the	title	of	the	formState	when	the
user	types	into	the	input.

3.	 setPhoto	allows	a	user	to	upload	an	image	and	stores	it	in	the
formState	as	the	image.

4.	 savePhoto	is	where	we	store	the	image	in	S3	and	then	save	the
post	information	to	AppSync	using	a	GraphQL	mutation:

a.	 We	first	create	a	variable	called	imageKey	using	a
combination	of	the	image	name	and	a	uuid.

b.	 We	then	store	the	image	in	S3	using	the	imageKey	as
the	reference.

c.	 After	the	image	is	stored,	we	then	make	an	API	call	to
AppSync,	creating	a	new	Post	using	a	GraphQL
Mutation	and	passing	in	the	post	title	and
imageKey	as	the	fields.

Next,	open	src/Posts.js	and	update	it	with	the	following	code:

/*	src/Posts.js	*/

import	React,	{	useReducer,	useEffect	}	from	'react';

import	{	listPosts	}	from	'./graphql/queries'

import	{	onCreatePost	}	from	'./graphql/subscriptions'



import	{	API,	graphqlOperation,	Storage	}	from	'aws-amplify'

function	reducer(state,	action)	{

		switch(action.type)	{

				case	'SET_POSTS':

						return		action.posts

				case	'ADD_POST':

						return	[action.post,	...state]

				default:

						return	state

		}

}

async	function	getSignedPosts(posts)	{

		const	signedPosts	=	await	Promise.all(

				posts.map(async	item	=>	{

						const	signedUrl	=	await	Storage.get(item.imageKey)

						item.imageUrl	=	signedUrl

						return	item

				})

		)

		return	signedPosts

}

function	Posts()	{

		const	[posts,	dispatch]	=	useReducer(reducer,	[])

		useEffect(()	=>	{

				fetchPosts()

				const	subscription	=	

API.graphql(graphqlOperation(onCreatePost)).subscribe({

						next:	async	post	=>	{

								const	newPost	=	post.value.data.onCreatePost

								const	signedUrl	=	await	Storage.get(newPost.imageKey)

								newPost.imageUrl	=	signedUrl

								dispatch({	type:	'ADD_POST',	post:	newPost	})

						}

				})

				return	()	=>	subscription.unsubscribe()

		},	[])

		async	function	fetchPosts()	{

				const	postData	=	await	

API.graphql(graphqlOperation(listPosts))

				const	{	data:	{	listPosts:	{	items	}}}	=	postData

				const	signedPosts	=	await	getSignedPosts(items)

				dispatch({	type:	'SET_POSTS',	posts:	signedPosts	})

		}



		return	(

				<div>

						<h2	style={heading}>Posts</h2>

						{

								posts.map(post	=>	(

										<div	key={post.id}	style={postContainer}>

												<img	style={postImage}	src={post.imageUrl}	/>

												<h3	style={postTitle}>{post.title}</h3>

										</div>

								))

						}

				</div>

		)

}

const	postContainer	=	{

		padding:	'20px	0px	0px',

		borderBottom:	'1px	solid	#ddd'

}

const	heading	=	{	margin:	'20px	0px'	}

const	postImage	=	{	width:	400	}

const	postTitle	=	{	marginTop:	4	}

export	default	Posts

USEREDUCER

In	this	component,	we	are	using	the	useReducer	hook	to	manage
application	state.	We	do	this	because	we	will	be	having	a	GraphQL
subscription	that	will	be	handling	data	coming	through	in	real	time.
Because	useState	creates	a	closure,	we	must	move	the	state	that	is
outside	the	component	into	a	reducer.

The	reducer	has	two	actions,	one	for	adding	a	single	post	(ADD_POST)
and	one	for	setting	an	array	of	posts	(SET_POSTS).

ABOUT	THIS	COMPONENT

There	are	two	main	things	happening	in	this	component:

useEffect



When	the	component	loads,	this	hook	will	fire,	creating	a	new
GraphQL	subscription	and	then	calling	the	fetchPosts	function
that	we	will	go	over	in	the	next	step:

1.	 The	subscription	will	listen	for	new	posts	that	are	created	by
using	the	onCreatePost	subscription.

2.	 When	a	new	post	is	created,	the	next	function	will	fire	and	the
data	for	the	new	post	will	come	through	in	the	function	argument
(post).

3.	 We	then	use	the	post	image	imageKey	to	get	a	signed	URL	by
using	the	Storage	API,	calling	Storage.get.

4.	 After	getting	the	signed	URL	for	the	image,	we	add	the
imageURL	field	to	the	post	and	dipatch	ADD_POST	to	add	the
new	post	to	the	state.

fetchPosts

This	function	fetches	the	posts	from	the	API,	then	calls
getSignedPosts	passing	in	the	posts:

1.	 The	getSignedPosts	function	will	map	over	all	of	the	posts
in	the	array,	get	a	signed	URL	for	the	image	in	the	post,	and
assign	a	new	imageUrl	field	to	the	post	with	the	signed	image
URL.

2.	 One	the	signed	posts	are	returned,	SET_POSTS	is	dispatched,
updating	the	state	with	the	posts	array.

That’s	it;	we	should	now	be	able	to	run	the	app	and	test	it	out:

~	npm	start

To	test	out	the	subscription/real-time	functionality,	try	opening	a	new
window	and	running	the	app	in	both	windows,	viewing	the	posts	in	one
window	and	creating	a	post	in	another	window.



Summary
Here	are	a	few	things	to	keep	in	mind	from	this	chapter:

When	working	with	storage,	images	cannot	be	referenced	directly
by	their	URL;	they	must	be	signed	using	a	Storage.get	call.

Once	a	file	is	returned	with	a	signed	URL,	it	will	be	valid	for	15
minutes	by	default;	after	that,	it	will	expire.	This	can	be
overridden	by	passing	in	an	expires	option	to	set	the
availability	of	your	URLs.

When	working	with	an	array	of	images,	you	can	map	over	the
array	and	use	Promise.all	to	get	a	signed	URL	for	each	item
in	the	array.



Chapter	11.	Hosting:	Deploying
Your	Application	to	the	Amplify
Console	with	CI	and	CD

Now	that	we’ve	looked	at	building	out	our	apps,	how	do	we	make	them
live	and	show	them	to	the	world?	In	this	chapter,	we’ll	look	at	a	couple	of
different	hosting	options	with	Amplify,	and	also	how	to	deploy	your	app
using	a	custom	domain	name.

The	service	we’ll	be	using	is	the	Amplify	Console	hosting	service.	The
Amplify	Console	is	a	fully	managed	hosting	service	that	provides	a	simple
workflow	for	deploying	static	sites	and	full	stack	serverless	applications.
Using	Amplify	Console,	you	deploy	your	code	using	the	CLI,	a	GitHub
repository,	or	manually,	and	the	service	will	build	and	deploy	your	app	for
you.

When	working	with	frameworks	like	React,	Vue,	Angular,	or	even
frameworks	like	Gatsby,	Next,	or	Nuxt,	there	is	typically	a	build	phase	that
needs	to	be	run.	This	phase	will	take	all	of	the	JavaScript,	CSS,	and
images	and,	using	a	module	bundler	such	as	webpack,	create	a	deployable
build	of	your	website.

The	Amplify	Console	will	allow	you	to	configure	the	app’s	build	settings
so	that	when	you	are	ready	to	deploy	a	new	version,	the	service	will	be
able	to	take	your	raw	files,	then	build	and	deploy	your	app	to	your	live
domain	for	you.



In	this	chapter,	we’ll	learn	about	the	following:

CLI-based	deployments

Using	our	local	project,	we	will	deploy	an	app	to	Amplify	Console
hosting	directly	from	the	CLI.

Git-based	deployments

Using	a	GitHub	repository,	we	will	deploy	an	app	to	Amplify	Console
hosting	and	learn	how	to	trigger	new	builds	when	changes	are	merged
into	the	master	branch.

Access	control

Add	access	control	to	restrict	access	to	your	branches	with	a	username
and	password.

Custom	domains

Use	your	custom	domain	name	for	the	deployment.

Let’s	get	started.

CLI-Based	Deployments
In	this	section,	we	will	learn	how	to	deploy	a	project	to	Amplify	Console
hosting	directly	from	the	CLI.

To	get	started,	create	a	new	React	app:

~	npx	create-react-app	fullstack-app

~	cd	full-stack-app

~	npm	install	aws-amplify	@aws-amplify/ui-react

Next,	we’ll	initialize	a	new	Amplify	project	and	add	a	single	service,
authentication:



~	amplify	init

#	Follow	the	steps	to	give	the	project	a	name,	environment	name,	

and	set	the

		default	text	editor.

#	Accept	defaults	for	everything	else	and	choose	your	AWS	

Profile.

~	amplify	add	auth

?	Do	you	want	to	use	the	default	authentication	and	security	

configuration?

		Default	configuration

?	How	do	you	want	users	to	be	able	to	sign	in?	Username

?	Do	you	want	to	configure	advanced	settings?	No,	I	am	done.

When	running	the	init	command,	we	are	walked	through	the	same	set	of
questions	we’ve	been	walked	through	in	all	of	the	previous	chapters.

We	are	asked	questions	like	what	our	source	and	distribution	directories
are,	as	well	as	the	build	command.	By	default,	the	Amplify	CLI	will	detect
the	framework	and	automatically	set	these	for	you	for	many	popular
frameworks,	like	in	our	React	projects.

If	you	are	using	a	framework	that	is	not	recognized	by	the	Amplify	CLI,
or	have	a	custom	build	configuration,	you	may	need	to	set	these	values	to
be	something	different.

To	add	hosting,	we	can	use	the	hosting	category:

~	amplify	add	hosting

?	Select	the	plugin	module	to	execute:	Hosting	with	Amplify	

Console

?	Choose	a	type:	Manual	Deployment

Next,	let’s	update	our	frontend	code	to	add	a	basic	greeting	as	well	as
authentication.

Start	by	opening	src/index.js	and	configuring	the	Amplify	app	by	adding



the	following	code	below	the	last	import:

import	Amplify	from	'aws-amplify'

import	config	from	'./aws-exports'

Amplify.configure(config)

Then	update	src/App.js	with	the	following	code:

import	React	from	'react'

import	logo	from	'./logo.svg'

import	'./App.css'

import	{	withAuthenticator	}	from	'@aws-amplify/ui-react'

function	App()	{

		return	(

				<div	className="App">

						<header	className="App-header">

								<img	src={logo}	className="App-logo"	alt="logo"	/>

								<h1>Hello	World!</h1>

						</header>

				</div>

		);

}

export	default	withAuthenticator(App,	{	includeGreetings:	true	

})

Our	app	is	now	ready	to	deploy.	To	deploy	both	the	frontend	and	backend,
we	can	run	the	publish	command.	The	publish	command	will	deploy
both	the	frontend	and	backend	code	to	the	Amplify	Console:

~	amplify	publish

Now,	we	should	be	able	to	view	the	app	in	the	console	with	both	the
frontend	deployment	as	well	as	backend	service	configuration:

~	amplify	console

From	the	Amplify	Console	dashboard,	click	the	app	name	that	was	just



deployed.	Here,	you	should	be	able	to	see	a	toggle	to	view	both	the
frontend	(Frontend	environments)	as	well	as	the	backend	(Backend
environments)	deployments,	as	shown	in	Figure	11-1.



Figure	11-1.	Amplify	Console	overview

From	the	Frontend	environments	view,	you	should	be	able	to	click	the
domain	to	view	the	live	website	hosted	by	the	Amplify	Console.	The
domain	URL	should	look	something	like	this:

https://env_name.deployment_id.amplifyapp.com

In	the	lefthand	menu	are	options	for	things	like	domain	management	for
custom	domains	(covered	in	“Custom	Domains”),	email	notifications	for
build	events,	access	control	(something	we	will	cover	in	this	chapter),
logs,	and	redirects.

When	you	make	an	update	and	need	to	deploy	a	new	version,	you	can	run
the	publish	command	again	to	deploy	the	updated	version	of	the	app.

Git-Based	Deployments
Now	let’s	look	at	how	you	can	enable	Git-based	deployments	using	an
Amplify	app	stored	in	a	GitHub	repository.	While	deploying	from	your
local	project	works	well,	many	times	you	will	be	working	from	a	Git
repository	either	alone	or	with	a	team.	The	Amplify	Console	supports	Git-
based	hosting	for	your	applications,	along	with	built-in	features	automatic
deployments	on	merges	and	feature	branch	deployments	(branch
deployments	linked	to	each	feature	branch).

Let’s	look	at	how	to	take	the	app	we	have	already	built	and	deploy	it	to	the
Amplify	Console	from	a	GitHub	repository.

The	first	step	is	to	remove	the	existing	amplify	backend	that	we	have	set
up:



~	amplify	delete

Then,	create	a	new	Amplify	app	and	add	authentication:

~	amplify	init

#	Follow	the	steps	to	give	the	project	a	name,	environment	name,	

and	set	the

		default	text	editor.

#	Accept	defaults	for	everything	else	and	choose	your	AWS	

Profile.

~	amplify	add	auth

?	Do	you	want	to	use	the	default	authentication	and	security	

configuration?

		Default	configuration

?	How	do	you	want	users	to	be	able	to	sign	in?	Username

?	Do	you	want	to	configure	advanced	settings?	No,	I	am	done.

Now,	deploy	the	backend	using	the	Amplify	push	command:

~	amplify	push

We	now	need	to	create	a	GitHub	repository	to	hold	the	app.

Creating	the	GitHub	Repository

The	next	thing	you	will	need	to	do	is	go	to	GitHub.com	and	create	a	new
repository.	I’ll	create	a	new	repo	called	my-react-app,	as	shown	in
Figure	11-2.



Figure	11-2.	Creating	a	GitHub	repository

Once	you’ve	created	the	repo,	you	will	be	given	a	repo	URI	that	looks	like
what’s	shown	in	Figure	11-3:

git@github.com:dabit3/my-react-app.git



Figure	11-3.	GitHub	project	URI

Copy	this	repo	URI	and	return	to	the	command	line.	From	here,	we	will



initialize	a	new	GitHub	project	in	our	local	app:

~	git	init

~	git	remote	add	origin	git@github.com:your_github_username/my-

react-app.git

We’ll	then	add	the	files	to	be	tracked	and	push	the	changes	to	our	repo:

~	git	add	.

~	git	commit	-m	'initial	commit'

~	git	push	origin	master

Now	that	the	app	has	been	pushed	to	GitHub,	we	can	connect	to	Amplify
Console	hosting.	To	do	so,	let’s	add	it	via	the	CLI:

~	amplify	add	hosting

?	Select	the	plugin	module	to	execute:	Hosting	with	Amplify	

Console

?	Choose	a	type:	Continuous	deployment	(Git-based	deployments)

NOTE
The	CLI	should	open	the	Amplify	Console	in	your	web	browser,	allowing	you	to
choose	GitHub	as	your	source	code	provider.

1.	 As	your	first	step	(in	the	Amplify	Console),	choose	GitHub	as	the
source	code	provider	and	then	click	Connect	branch.

2.	 Next,	sign	in	with	GitHub,	then	choose	the	new	repo	you	just
created	and	the	master	branch.	Click	Next.

3.	 In	the	Configure	build	settings	page,	when	asked	to	“select	a
backend	environment,”	choose	the	environment	name	you	already
have	created.

4.	 Next,	in	the	Configure	build	settings	page,	when	asked	to	“select
an	existing	service	role	or	create	a	new	one	so	Amplify	Console



may	access	your	resources,”	click	Create	new	role	to	create	a	new
IAM	role:

a.	 Click	Next:	Permissions,	Next:	Tags,	Next:	Review,	and
then	Create	Role	to	create	a	new	IAM	role.

b.	 Go	back	to	the	Configure	build	settings	page,	click	the
refresh	button,	and	select	the	newly	created	role	from	the
dropdown.

5.	 Click	Next.

6.	 In	the	Review	page,	click	Save	and	deploy	to	deploy	the	app.

The	app	has	now	been	deployed	to	the	Amplify	Console	and	a	new	build
will	begin.	When	the	build	finishes,	you	should	be	given	a	live	URL	to
view	your	app.

Git-Based	CI/CD

Now	that	the	app	has	been	deployed,	let’s	look	at	how	to	implement	CD
into	the	app.

The	basic	idea	with	Git-based	CI	and	CD	is	that	you	can	deploy	and	test
builds	to	any	branch	by	pushing	directly	to	Git.	Once	the	changes	are
merged,	a	new	build	is	kicked	off	and	a	live	URL	is	given	to	you	to	try
out.

In	this	way,	you	can	have	feature/branch	deployments,	like	prod	(for
production),	dev	(for	development),	and	feature_name	(for	new	features).
When	building	in	this	way,	you	are	able	to	test	out	new	changes	in	a	live
environment,	testing	out	not	only	the	frontend	but	also	the	backend
changes.

Let’s	try	kicking	off	a	new	build.	To	do	so,	make	a	change	to	one	of	the



local	files.	Update	src/App.js	with	some	updated	text,	then	add	the	changes
and	push	to	GitHub:

~	git	add	.

~	git	commit	-m	'updates	to	App.js'

~	git	push	origin	master

Now,	when	you	open	your	app	in	the	Amplify	Console,	you	should	notice
a	new	build	has	been	kicked	off	automatically	for	you.

Access	Control
Next,	let’s	look	at	how	to	enable	access	control	to	password	protect	our
deployment.

Using	access	control,	you	can	specify	that	a	visitor	must	have	a	username
and	password	to	view	either	a	deployment	or	a	specific	branch
deployment.	This	is	especially	useful	if	you	are	testing	out	new	private
features	that	you	wish	to	keep	undiscoverable	by	anyone	outside	your
team.

Here’s	how	to	enable	access	controls:

1.	 In	the	lefthand	menu,	click	Access	Control.

2.	 Next,	click	Manage	Access.

3.	 Here,	for	the	master	branch,	set	the	Access	setting	to	Restricted,
then	set	a	username	and	password.

Now,	open	the	URL	for	the	deployment.	You	will	notice	that	you	will	be
unable	to	view	it	without	entering	the	username	and	password.

In	the	Access	Control	menu,	you	can	also	choose	to	set	access	control	on	a



branch-by-branch	basis.

Custom	Domains
Finally,	let’s	learn	how	to	use	a	custom	domain	name	for	our	app.

To	enable	a	custom	domain,	we	need	to	do	three	things:

Add	the	domain	in	Amazon	Route53.

Set	the	nameservers	in	the	DNS	settings	of	the	domain	provider
for	the	domain	you	are	using.

Configure	the	Amplify	Console	app	to	use	the	domain	added	in
Route	53.

Let’s	walk	through	how	to	do	this:

1.	 In	the	Services	dropdown	menu	in	the	main	AWS	dashboard,
search	for	or	click	Route53.

2.	 Click	Hosted	Zones.

3.	 Click	Create	Hosted	Zone.

4.	 Set	the	domain	name	by	adding	the	URL	to	the	Domain	name
input	field,	then	click	Create.

After	creating	the	Hosted	Zone,	you	will	be	given	four	nameserver	values.
You	will	need	those	values	in	the	next	step,	so	keep	them	handy.	You	can
also	navigate	back	to	them	at	any	time	by	visiting	the	Route53	dashboard
and	clicking	on	the	domain	you	would	like	to	retrieve	the	values	for.	The
nameservers	will	look	something	like	this:

ns-1020.awsdns-63.net

ns-1523.awsdns-62.org

ns-244.awsdns-30.com

ns-1724.awsdns-23.co.uk



1.	 Now,	go	into	your	hosting	account	(e.g.,	GoDaddy	or	Google
Domains),	and	set	these	custom	nameservers	in	your	DNS	setting
for	the	domain	you’re	using.

2.	 Next,	back	in	the	Amplify	Console	for	the	app	for	which	you
would	like	to	enable	a	custom	domain,	click	Domain
Management	in	the	left	menu,	then	click	the	Add	Domain	button.

3.	 Here,	the	drop-down	menu	should	show	you	the	domain	you	have
in	Route53.	Choose	this	domain	and	click	Configure	domain.

This	should	deploy	the	app	to	your	custom	domain	(it	will	take	5–30
minutes	for	the	DNS	to	propagate).

Summary
Here	are	a	few	things	to	keep	in	mind	from	this	chapter:

The	Amplify	Console	hosts	both	backend	and	as	well	as	frontend
deployments.

There	are	two	main	ways	to	deploy	the	frontend	to	the	Amplify
Console,	from	your	local	project	or	from	a	Git	repository.	You
can	also	upload	projects	manually	or	host	them	from	Dropbox.

Once	your	app	is	hosted,	you	can	then	set	up	things	like	password
protection,	custom	domains,	and	branch	deployments	by
configuring	your	deployment	in	the	Amplify	Console.



Index

SYMBOLS

@auth	directive,	Authorization,	@auth,	Home

@connection	directive,	GraphQL	Transform:	@connection,	@connection,
Home

@key	directive,	@key,	Home

@model	directive,	Creating	the	GraphQL	API,	GraphQL	Transform:
@connection

A

A/B	testing,	Experimentation

abstractions,	Modern	Serverless	Philosophy,	Other	options,	Amplify
client,	Client	Authentication	Overview,	Creating	the	Form

access	control,	Introduction	to	Amazon	Cognito,	Access	Control

AccessTokens,	Amplify	client

add	command,	Creating	and	Deploying	Your	First	Service,	Creating	a
New	API

adding

Amplify,	Creating	the	React	App	and	Adding	Amplify

API,	Adding	the	API,	Adding	the	API-Adding	the	API

authentication,	Adding	Authentication	and	Group	Privileges,	Adding
Authentication

custom	logic	for	resizing	images,	Adding	the	Custom	Logic	for



Resizing	the	Image

DynamoDB	NoSQL	database,	Adding	the	Database

group	privileges,	Adding	Authentication	and	Group	Privileges

post-confirmation	Lambda	trigger,	Adding	a	Post-Confirmation
Lambda	Trigger-Adding	a	Post-Confirmation	Lambda	Trigger

addItem	function,	Admin	Component

Admin	component,	Admin	Component,	Admin

Admin	route,	Router

Admin.js	file,	Creating	the	Frontend

Amazon	API	Gateway,	Full	Stack	Development	in	the	Era	of	Serverless
Computing,	Adding	the	API

Amazon	CloudFormation,	The	AWS	Serverless	Application	Model

Amazon	Cognito

about,	Full	Stack	Development	in	the	Era	of	Serverless	Computing,
Introduction	to	Amazon	Cognito-Amazon	Cognito	Integration	with
AWS	Amplify

event	data,	Amazon	Cognito	Event

how	it	works,	How	Amazon	Cognito	Works

integrating	with	AWS	Amplify,	Amazon	Cognito	Integration	with
AWS	Amplify

user	pools	authentication	type,	Multiple	Authentication	Types

Amazon	DynamoDB,	Full	Stack	Development	in	the	Era	of	Serverless
Computing

Amazon	DynamoDB	tables,	The	AWS	Serverless	Application	Model,
Adding	the	API,	@key



Amazon	EC2,	About	AWS

Amazon	Pinpoint	(see	analytics)

Amazon	Rekognition,	Cost

Amazon	S3

about,	Full	Stack	Development	in	the	Era	of	Serverless	Computing,
About	AWS

dynamic	image	resizing	with	AWS	Lambda	and,	Dynamic	Image
Resizing	with	AWS	Lambda	and	Amazon	S3-Uploading	Images	from
the	React	Application

event,	Amazon	S3	Event

image	storage	using,	Using	Amazon	S3-About	this	component

Amazon	SQS	(Simple	Queue	Service),	About	AWS

Amplify

about,	Full	Stack	Development	in	the	Era	of	Serverless	Computing

adding,	Creating	the	React	App	and	Adding	Amplify

creating,	Creating	the	Amplify	App	and	Adding	the	Features

integrating	Amazon	Cognito	with,	Amazon	Cognito	Integration	with
AWS	Amplify

amplify	add	api	command,	Summary

amplify	add	function	command,	Summary

Amplify	CLI

about,	Amplify	CLI,	Introduction	to	the	AWS	Amplify	CLI

Amplify	client,	Amplify	client

AWS	AppSync,	AWS	AppSync



AWS	SAM	(Serverless	Application	Model)	and,	The	AWS	Serverless
Application	Model

configuring,	Installing	and	Configuring	the	Amplify	CLI

creating	serverless	functions	with,	Creating	a	New	Serverless
Function	with	the	Amplify	CLI

creating	services,	Creating	and	Deploying	Your	First	Service

defined,	Amplify	Framework

deleting	resources,	Deleting	the	Resources

deploying	services,	Creating	and	Deploying	Your	First	Service

initializing	first	project,	Initializing	Your	First	Amplify	Project

installing,	Installing	and	Configuring	the	Amplify	CLI

Serverless	Framework	and,	Serverless	Framework

Amplify	client,	Amplify	client,	The	Amplify	Client	API	Category

Amplify	client	library,	Amplify	Framework,	Creating	the	React
Application	and	Installing	the	Dependencies

Amplify	Console,	deploying	apps	to	with	CI	and	CD,	Hosting:	Deploying
Your	Application	to	the	Amplify	Console	with	CI	and	CD-Custom
Domains

Amplify	Core,	Creating	the	Base	Project

Amplify	DataStore

about,	Building	Offline	Apps	with	Amplify	DataStore

building	offline/real-time	apps	with,	Building	an	Offline	and	Real-
Time	App	with	Amplify	DataStore-Writing	the	Client-Side	Code

creating	AppSync	GraphQL	API,	Creating	the	API

creating	base	projects,	Creating	the	Base	Project



operations,	Amplify	DataStore	Operations

overview	of,	Amplify	DataStore	Overview

predicates,	DataStore	Predicates

testing	offline	functionality,	Testing	the	Offline	Functionality

testing	real-time	functionality,	Testing	the	Real-Time	Functionality

website,	About	Amplify	DataStore

writing	client-side	code,	Writing	the	Client-Side	Code

amplify	folder,	Initializing	Your	First	Amplify	Project

Amplify	Framework,	Amplify	Framework

Amplify	GraphQL	Transform	library,	Creating	the	GraphQL	API,
GraphQL	Transform:	@connection,	Home

analytics,	Amplify	CLI

Angular,	Amplify	client,	Amazon	Cognito	Integration	with	AWS	Amplify,
Client	Authentication	Overview,	Hosting:	Deploying	Your	Application	to
the	Amplify	Console	with	CI	and	CD

Ant	Design,	Summary,	Creating	the	Base	Project

Apex,	Other	options

API	category,	Summary

API	class,	Getting	Started	with	AWS	Amplify

API	Gateway

about,	Getting	Started	with	AWS	Amplify

APIs,	The	AWS	Serverless	Application	Model

configuring	endpoint,	Summary

events,	API	Gateway	Event



API	key	authentication	method,	Multiple	Authentication	Types

API	layer,	AWS	AppSync

apiGateway	property,	Updating	the	Function

apiName	argument,	The	Amplify	Client	API	Category

APIs

adding,	Adding	the	API,	Adding	the	API-Adding	the	API

(see	also	AWS	AppSync)

calling,	Calling	the	API	and	Rendering	the	Data	in	React

creating,	Getting	Started	with	AWS	Amplify,	Creating	a	New	API,
Summary,	Creating	the	API

defined,	Listing	Notes	(GraphQL	Query)

deploying,	Deploying	the	API	and	the	Lambda	Function

for	ecommerce	app,	What	We’ll	Build

GraphQL,	What	Makes	Up	a	GraphQL	API?

interacting	with,	Interacting	with	the	New	API-Calling	the	API	and
Rendering	the	Data	in	React

updating	function	to	call,	Updating	the	Function	to	Call	Another	API

App	function,	Listing	Notes	(GraphQL	Query),	Updating	Notes	(GraphQL
Mutation)

app.delete	method,	Adding	the	API

applications

configuring,	Configuring	the	App

creating,	Building	the	App-Summary

serverless,	Characteristics	of	a	Serverless	Application



testing,	Testing	the	App,	Testing	the	App,	Testing	It	Out

architect,	Benefits	of	a	Serverless	Architecture

AsyncStorage,	Amplify	client

auth,	Amplify	CLI

(see	also	Amazon	Cognito)

Auth	class,	Client	Authentication	Overview,	Protected	Component,
Summary,	Summary

Auth.currentAuthenticatedUser	method,	Protected	Component,	Profile
Component

Auth0,	Modern	Serverless	Philosophy,	Introduction	to	Authentication,
Multiple	Authentication	Types

authentication

about,	Introduction	to	Authentication

adding,	Adding	Authentication	and	Group	Privileges,	Adding
Authentication

complexity	of,	Summary

for	ecommerce	app,	What	We’ll	Build

GraphQL	API,	Authentication

multiple	types,	Multiple	Authentication	Types

authorization,	Authorization

AutoMerge	conflict-resolution	strategy,	Building	Offline	Apps	with
Amplify	DataStore

AWS	(Amazon	Web	Service)

about,	Full	Stack	Development	in	the	Era	of	Serverless	Computing,
Introduction	to	AWS



full	stack	serverless	on,	Full	Stack	Serverless	on	AWS

AWS	AppSync

about,	Full	Stack	Development	in	the	Era	of	Serverless	Computing,
AWS	AppSync,	GraphQL	Operations,	AWS	AppSync	In-Depth

Admin	component,	Admin

API,	The	AppSync	API

authentication,	Authentication

authorization,	Authorization

building	backend,	Building	the	Backend-@connection

building	frontend,	Building	the	Frontend-Home

Container	component,	Container

creating	Amplify	app,	Creating	the	Amplify	App	and	Adding	the
Features

custom	data	access	patterns	using	GSIs,	Custom	Data	Access	Patterns
Using	GSIs

deploying	services,	Deploying	the	Services

Footer	component,	Footer

getting	started,	Starting	to	Build	the	App

Home	component,	Home

multiple	authentication	types,	Multiple	Authentication	Types

Nav	component,	Nav

Performance	component,	Performance

relationships	between	GraphQL	types,	Relationships	Between
GraphQL	Types



Router	component,	Router

AWS	Lambda,	Creating	and	Deploying	a	Serverless	Function,	Dynamic
Image	Resizing	with	AWS	Lambda	and	Amazon	S3-Uploading	Images
from	the	React	Application

AWS	Lambda	functions,	The	AWS	Serverless	Application	Model

AWS	SAM	(Serverless	Application	Model),	The	AWS	Serverless
Application	Model

AWS	SDKs,	Using	Amazon	S3

AWS	Signature	Version	4	signing	process,	Multiple	Authentication	Types

aws-exports.js	file,	Initializing	Your	First	Amplify	Project,	Configuring
the	Client	App	to	Work	with	Amplify

Axios	library,	installing,	Installing	Axios

B

BaaS	(backend	as	a	service),	Modern	Serverless	Philosophy

backend,	Building	the	Backend-@connection,	CLI-Based	Deployments

backend	folder,	Initializing	Your	First	Amplify	Project

bucket	testing,	Experimentation

business	logic,	Modern	Serverless	Philosophy,	Developer	velocity,
Creating	the	Form

business	value,	Modern	Serverless	Philosophy,	Decreased	operational
responsibilities

Button	component,	Creating	the	Form

C

calling	APIs,	Calling	the	API	and	Rendering	the	Data	in	React



canPerformAction	function,	Adding	the	API

catch	block,	Creating	Notes	(GraphQL	Mutation)

checkUser	function,	checkUser	Function

checkUser.js	file,	Creating	the	Frontend

CI/CD	(continuous	integration	and	continuous	deployment),	Hosting:
Deploying	Your	Application	to	the	Amplify	Console	with	CI	and	CD-
Custom	Domains

CLI-based	deployments,	CLI-Based	Deployments

client	app

configuring,	Configuring	the	Client	App	to	Work	with	Amplify

updating,	Updating	the	Client	App

client	authentication,	Client	Authentication	Overview

client	library,	Amplify	Framework,	Creating	the	React	Application	and
Installing	the	Dependencies

client-side	code,	writing,	Writing	the	Client-Side	Code,	Writing	the	Client-
Side	Code

"Cloud	Programming	Simplified:	A	Berkeley	View	on	Serverless
Computing",	Modern	Serverless	Philosophy

cloud	computing,	growth	of,	Summary

Cloudflare	Workers,	Other	options

CloudFormation,	The	AWS	Serverless	Application	Model,	Amplify	CLI

code

as	a	benefit	of	serverless	architecture,	Less	code

client-side,	Writing	the	Client-Side	Code,	Writing	the	Client-Side
Code



Cognito

about,	Full	Stack	Development	in	the	Era	of	Serverless	Computing,
Introduction	to	Amazon	Cognito-Amazon	Cognito	Integration	with
AWS	Amplify

event	data,	Amazon	Cognito	Event

how	it	works,	How	Amazon	Cognito	Works

integrating	with	AWS	Amplify,	Amazon	Cognito	Integration	with
AWS	Amplify

user	pools	authentication	type,	Multiple	Authentication	Types

Cognito	groups,	checkUser	Function,	Authorization

Cognito	identity	pools,	Multiple	Authentication	Types

Cognito	user	pool,	How	Amazon	Cognito	Works,	IAM	Permissions	and
Trigger	Configuration,	Multiple	Authentication	Types,	Performance

CoinLore	API,	Updating	the	Function	to	Call	Another	API

coins	route,	creating,	Creating	the	/coins	Route

complex	object	storage,	Other	options,	Amplify	client

components,	creating,	Creating	the	First	Component

configure	command,	Installing	and	Configuring	the	Amplify	CLI

configuring

AmplifyCLI,	Installing	and	Configuring	the	Amplify	CLI

API	Gateway	endpoint,	Summary

applications,	Configuring	the	App

client	app,	Configuring	the	Client	App	to	Work	with	Amplify

triggers,	IAM	Permissions	and	Trigger	Configuration



ConfirmSignUp	component,	ConfirmSignUp	Component

confirmSignUp	function,	ConfirmSignUp	Component,	Completing
Form.js

conflict	detection,	Amplify	DataStore	Overview

Container	component,	Creating	the	First	Component,	Container
Component,	Container

Container.js	file,	Creating	the	File	and	Folder	Structure,	Creating	the
Frontend

cost,	as	a	benefit	of	serverless	architecture,	Cost

creating

Amplify	app,	Creating	the	Amplify	App	and	Adding	the	Features

APIs,	Getting	Started	with	AWS	Amplify,	Creating	a	New	API,
Summary,	Creating	the	API

applications,	Building	the	App-Summary

AppSync	GraphQL	API,	Creating	the	API,	Creating	the	API

backend,	Building	the	Backend-@connection

base	projects,	Creating	the	Base	Project,	Creating	the	Base	Project,
Creating	the	Base	Project

coins	route,	Creating	the	/coins	Route

components,	Creating	the	First	Component

custom	authentication	forms,	Creating	the	Form-Updating	the	Profile
Component

file/folder	structure,	Creating	the	File	and	Folder	Structure

frontend,	Creating	the	Frontend-Main	Component,	Building	the
Frontend-Home



GitHub	repository,	Creating	the	GitHub	Repository

GraphQL	API,	Creating	the	GraphQL	API

Lambda	functions,	Summary

notes,	Creating	Notes	(GraphQL	Mutation)

offline	apps	with	Amplify	DataStore,	Building	an	Offline	and	Real-
Time	App	with	Amplify	DataStore-Writing	the	Client-Side	Code

protectedRoute	hook,	Creating	the	protectedRoute	Hook

React	application,	Creating	the	React	Application	and	Installing	the
Dependencies,	Building	the	React	Application-Summary,	Creating
the	React	App	and	Adding	Amplify

real-time	apps	with	Amplify	DataStore,	Building	an	Offline	and
Real-Time	App	with	Amplify	DataStore-Writing	the	Client-Side
Code

reducers,	Listing	Notes	(GraphQL	Query)

serverless	functions,	Creating	and	Deploying	a	Serverless	Function-
Creating	the	/coins	Route

CRUD+L	(create,	read,	update,	delete,	and	list),	Creating	Your	First	App

cryptofunction	folder/function,	Walking	Through	the	Code

CSS,	Styling	the	UI	Components

#current-cloud-backend	folders,	Initializing	Your	First	Amplify	Project

custom	authentication	forms

about,	Creating	the	Form

completing,	Completing	Form.js

ConfirmSignUp	component,	ConfirmSignUp	Component

creating,	Creating	the	Form-Updating	the	Profile	Component



ForgotPassword	component,	ForgotPassword	Component

ForgotPasswordSubmit	component,	ForgotPasswordSubmit
Component

form	type	toggles,	Form	Type	Toggles

renderForm	function,	renderForm	Function

SignIn	component,	SignIn	Component

SignUp	component,	SignUp	Component

testing	apps,	Testing	the	App

updateForm	helper	function,	updateForm	Helper	Function

updating	Profile	component,	Updating	the	Profile	Component

custom	authentication	strategies,	Custom	Authentication	Strategies

custom	conflict-resolution	strategy,	Building	Offline	Apps	with	Amplify
DataStore

custom	domains,	hosting	and,	Custom	Domains

D

data

deleting,	Amplify	DataStore	Operations

reading,	Amplify	DataStore	Operations

saving,	Amplify	DataStore	Operations

structure	of,	Event	Sources	and	Data	Structure-Amazon	Cognito
Event,	Summary

updating,	Amplify	DataStore	Operations

data	access	patterns,	Custom	Data	Access	Patterns	Using	GSIs



data	argument,	The	Amplify	Client	API	Category

data/API	layer,	Getting	Started	with	AWS	Amplify

delete	command,	Deleting	the	Resources

delete	method,	API	Gateway	Event,	Adding	the	API,	Adding	the	API,
Adding	the	API,	Admin	Component

deleteItem	function,	Main	Component

deleteNote	function,	Deleting	Notes	(GraphQL	Mutation)

deleting

data,	Amplify	DataStore	Operations

notes,	Deleting	Notes	(GraphQL	Mutation)

resources,	Deleting	the	Resources

dependencies,	installing,	Creating	the	React	Application	and	Installing	the
Dependencies

deploying

API,	Deploying	the	API	and	the	Lambda	Function

apps	to	Amplify	Console	with	CI	and	CD,	Hosting:	Deploying	Your
Application	to	the	Amplify	Console	with	CI	and	CD-Custom
Domains

CLI-based,	CLI-Based	Deployments

Git-based,	Git-Based	Deployments-Creating	the	GitHub	Repository

GraphQL	API,	Creating	the	GraphQL	API

Lambda	function,	Deploying	the	API	and	the	Lambda	Function

serverless	functions,	Creating	and	Deploying	a	Serverless	Function-
Creating	the	/coins	Route

services,	Creating	and	Deploying	Your	First	Service,	Deploying	the



Services

developer	velocity,	as	a	benefit	of	serverless	architecture,	Developer
velocity

displaying	profile	data,	Profile	Component

DNS,	Custom	Domains

dynamic	image	resizing,	with	AWS	Lambda	and	Amazon	S3,	Dynamic
Image	Resizing	with	AWS	Lambda	and	Amazon	S3-Uploading	Images
from	the	React	Application

DynamoDB,	Summary

DynamoDB	Document	Client,	Adding	the	API,	Summary

DynamoDB	NoSQL	database

adding,	Adding	the	Database

for	ecommerce	app,	What	We’ll	Build

E

ecommerce

about,	What	We’ll	Build

adding	API,	Adding	the	API-Adding	the	API

adding	authentication,	Adding	Authentication	and	Group	Privileges

adding	DynamoDB	NoSQL	database,	Adding	the	Database

adding	group	privileges,	Adding	Authentication	and	Group	Privileges

creating	frontend,	Creating	the	Frontend-Main	Component

entry	point,	Amplify	Framework,	Amplify	CLI,	Walking	Through	the
Code

event	sources,	Event	Sources	and	Data	Structure-Amazon	Cognito	Event



experimentation,	as	a	benefit	of	serverless	architecture,	Experimentation

Express	framework,	Walking	Through	the	Code,	Adding	the	API

Express	server,	Summary

F

FaaS	(functions	as	a	service),	Full	Stack	Development	in	the	Era	of
Serverless	Computing

Facebook,	AWS	AppSync,	What	Is	GraphQL?

favicon,	Initializing	Your	First	Amplify	Project

fetchMessages	function,	Writing	the	Client-Side	Code

fetchNotes	function,	Listing	Notes	(GraphQL	Query)

fetchPerformanceInfo	function,	Performance

fetchPosts	function,	About	this	component

files,	creating	structure	of,	Creating	the	File	and	Folder	Structure

Firebase,	Full	Stack	Development	in	the	Era	of	Serverless	Computing

Firestore,	Modern	Serverless	Philosophy

folders,	creating	structure	of,	Creating	the	File	and	Folder	Structure

Footer	component,	Footer

ForgotPassword	component,	ForgotPassword	Component

forgotPassword	function,	ForgotPassword	Component

ForgotPasswordSubmit	component,	ForgotPasswordSubmit	Component

forgotPasswordSubmit	function,	Completing	Form.js

Form	component,	Completing	Form.js

Form	function,	Form	Type	Toggles



form	state,	Creating	the	Form

form	type	toggles,	Form	Type	Toggles

formType,	Creating	the	Form

Framework-specific	authentication	components,	Client	Authentication
Overview

frontend,	Creating	the	Frontend-Main	Component,	Building	the	Frontend-
Home,	CLI-Based	Deployments

full	stack,	Full	Stack	Serverless	on	AWS

function	code,	Serverless	Framework	and,	Serverless	Framework

function	folder,	Walking	Through	the	Code

functions,	updating,	Updating	the	Function

G

Gatsby,	Hosting:	Deploying	Your	Application	to	the	Amplify	Console
with	CI	and	CD

get	method,	API	Gateway	Event,	Adding	the	API,	Adding	the	API,	Admin
Component

getGroupsForUser	function,	Adding	the	API

getItems	function,	Adding	the	API

getProducts	function,	Main	Component

Git-based	CI/CD,	Git-Based	CI/CD

Git-based	deployments,	Git-Based	Deployments-Creating	the	GitHub
Repository

GitHub	repository,	creating,	Creating	the	GitHub	Repository

GraphQL



about,	Amplify	client,	Introduction	to	GraphQL,	AWS	AppSync	In-
Depth

API,	What	Makes	Up	a	GraphQL	API?

mutations,	Creating	Notes	(GraphQL	Mutation),	Deleting	Notes
(GraphQL	Mutation),	Updating	Notes	(GraphQL	Mutation),
Summary

operations,	GraphQL	Operations

queries,	Listing	Notes	(GraphQL	Query)-Listing	Notes	(GraphQL
Query),	Summary

subscriptions,	Real-Time	Data	(GraphQL	Subscriptions),	Summary

types,	Relationships	Between	GraphQL	Types

GraphQL	API

about,	The	AppSync	API

Admin	component,	Admin

authentication,	Authentication

authorization,	Authorization

building	backend,	Building	the	Backend-@connection

building	frontend,	Building	the	Frontend-Home

Container	component,	Container

creating,	Creating	the	GraphQL	API,	Creating	the	API,	Creating	the
API

custom	data	access	patterns	using	GSIs,	Custom	Data	Access	Patterns
Using	GSIs

deploying,	Creating	the	GraphQL	API

deploying	services,	Deploying	the	Services



Footer	component,	Footer

getting	started,	Starting	to	Build	the	App

Home	component,	Home

interacting	with,	Viewing	and	Interacting	with	the	GraphQL	API

multiple	authentication	types,	Multiple	Authentication	Types

Nav	component,	Nav

Performance	component,	Performance

Router	component,	Router

viewing,	Viewing	and	Interacting	with	the	GraphQL	API

GraphQL	Transform	library,	Creating	the	GraphQL	API,	GraphQL
Transform:	@connection,	Home

group	privileges,	adding,	Adding	Authentication	and	Group	Privileges

GSIs	(global	secondary	indexes),	Adding	the	Database,	Custom	Data
Access	Patterns	Using	GSIs

H

hardcode,	Creating	a	New	Serverless	Function	with	the	Amplify	CLI

HashRouter,	Router	Component

helper	function,	updateForm	Helper	Function

HOC	(higher	order	component),	Client	Authentication	Overview

Home	component,	Home

Home	route,	Router

hosting

about,	Hosting:	Deploying	Your	Application	to	the	Amplify	Console
with	CI	and	CD



access	control,	Access	Control

CLI-based	deployments,	CLI-Based	Deployments

custom	domains,	Custom	Domains

Git-based	deployments,	Git-Based	Deployments-Creating	the	GitHub
Repository

hosting	platform,	Amplify	Framework

HTTP	method,	API	Gateway	Event

Hub	eventing	system,	Updating	the	Profile	Component

I

IAM	(identity	and	access	management)

authentication	type,	Multiple	Authentication	Types

permissions,	IAM	Permissions	and	Trigger	Configuration

user,	Installing	and	Configuring	the	Amplify	CLI

Icon	component,	Nav	Component

identity	pools,	How	Amazon	Cognito	Works

identity	service,	Introduction	to	Amazon	Cognito

IdTokens,	Amplify	client

image	storage

about,	Working	with	Images	and	Storage

using	Amazon	S3,	Using	Amazon	S3-About	this	component

images,	dynamic	resizing,	Dynamic	Image	Resizing	with	AWS	Lambda
and	Amazon	S3-Uploading	Images	from	the	React	Application

importing	models,	Amplify	DataStore	Operations



IndexDB	for	web,	Building	Offline	Apps	with	Amplify	DataStore

init	command,	Initializing	Your	First	Amplify	Project,	CLI-Based
Deployments

initializing	projects,	Initializing	Your	First	Amplify	Project

installing

Amplify	CLI,	Installing	and	Configuring	the	Amplify	CLI

Axios,	Installing	Axios

dependencies,	Creating	the	React	Application	and	Installing	the
Dependencies

Node.js,	Installing	and	Configuring	the	Amplify	CLI

Ionic,	Amplify	client

J

JAWS,	Serverless	Framework

L

Lambda

about,	Getting	Started	with	AWS	Amplify

adding	post-confirmation	triggers,	Adding	a	Post-Confirmation
Lambda	Trigger-Adding	a	Post-Confirmation	Lambda	Trigger

creating	functions,	Summary

deploying	functions,	Deploying	the	API	and	the	Lambda	Function

functions	for	ecommerce	app,	What	We’ll	Build

invoking	functions,	Summary,	Summary

triggering,	Summary



List,	Listing	Notes	(GraphQL	Query)

Listener,	Updating	the	Profile	Component,	Nav	Component,	Router
Component

listing	notes,	Listing	Notes	(GraphQL	Query)-Listing	Notes	(GraphQL
Query)

listNotes,	Listing	Notes	(GraphQL	Query)

local	eventing	system,	Updating	the	Profile	Component

localStorage,	Amplify	client

M

Main	component,	Main	Component

Main.js	file,	Creating	the	Frontend

managed	services,	Heavy	use	of	managed	services

Menu	component,	Nav	Component

MFA	(multifactor	authentication),	Introduction	to	Authentication,
ConfirmSignUp	Component

microservice	architecture,	AWS	AppSync

Microsoft	Azure,	Serverless	Framework

models,	importing,	Amplify	DataStore	Operations

mutations	(writes/updates),	AWS	AppSync

N

nameservers,	Custom	Domains

native	Android,	Amplify	client

native	iOS,	Amplify	client



Nav	component,	Nav	Component,	Nav	Component,	Nav

Nav.js	file,	Creating	the	File	and	Folder	Structure,	Creating	the	Frontend

Netlify	Functions,	Other	options

Next,	Hosting:	Deploying	Your	Application	to	the	Amplify	Console	with
CI	and	CD

Node	Version	Manager,	Installing	and	Configuring	the	Amplify	CLI

Node.js,	Serverless	Framework,	Installing	and	Configuring	the	Amplify
CLI

notes

creating,	Creating	Notes	(GraphQL	Mutation)

deleting,	Deleting	Notes	(GraphQL	Mutation)

listing,	Listing	Notes	(GraphQL	Query)-Listing	Notes	(GraphQL
Query)

updating,	Updating	Notes	(GraphQL	Mutation)

Nuxt,	Hosting:	Deploying	Your	Application	to	the	Amplify	Console	with
CI	and	CD

O

OAUTH	(open	authentication),	Introduction	to	Authentication

observe	operation,	Building	an	Offline	and	Real-Time	App	with	Amplify
DataStore

offline	apps,	building	(see	Amplify	DataStore)

offline	functionality,	testing,	Testing	the	Offline	Functionality

Okta,	Introduction	to	Authentication

onCreateNote	event,	Real-Time	Data	(GraphQL	Subscriptions)



OpenID	Connect	authentication	type,	Multiple	Authentication	Types

operational	responsibilities,	Decreased	operational	responsibilities

operations

Amplify	DataStore,	Amplify	DataStore	Operations

GraphQL,	GraphQL	Operations

optimistic	concurrency	conflict-resolution	strategy,	Building	Offline	Apps
with	Amplify	DataStore

optimistic	response,	Creating	Notes	(GraphQL	Mutation)

over-fetching,	What	Is	GraphQL?

P

pass	in,	Updating	the	Function,	Router	Component,	Updating	the	Profile
Component,	Adding	the	API,	@auth,	Home

path	argument,	The	Amplify	Client	API	Category

Performance	component,	Performance

Performance	route,	Router

Performance	type,	Relationships	Between	GraphQL	Types

permissions,	IAM	(Identity	and	Access	Management),	IAM	Permissions
and	Trigger	Configuration

persist,	Amplify	client,	Introduction	to	Authentication

post	method,	API	Gateway	Event,	Adding	the	API,	Adding	the	API,
Admin	Component

predicates,	Amplify	DataStore,	DataStore	Predicates

primary	key,	Adding	the	Database,	Relationships	Between	GraphQL
Types



private	files,	Using	Amazon	S3

Profile	component,	Profile	Component,	Completing	Form.js,	Updating	the
Profile	Component,	Profile	Component

profile	data,	displaying,	Profile	Component

profile	route,	Introduction	to	Authentication

Profile.js	file,	Creating	the	File	and	Folder	Structure,	Creating	the
Frontend

projects

creating	base,	Creating	the	Base	Project,	Creating	the	Base	Project,
Creating	the	Base	Project

initializing,	Initializing	Your	First	Amplify	Project

promise,	The	Amplify	Client	API	Category,	Updating	the	Function	to	Call
Another	API

Protected	component,	Protected	Component

protected	files,	Using	Amazon	S3

protected	routes,	Introduction	to	Authentication,	Custom	Authentication
Strategies

Protected.js	file,	Creating	the	File	and	Folder	Structure

protectedRoute	hook,	Creating	the	protectedRoute	Hook

Public	component,	Public	Component

public	files,	Using	Amazon	S3

public	route,	Introduction	to	Authentication

Public.js	file,	Creating	the	File	and	Folder	Structure

publish	command,	CLI-Based	Deployments

push	command,	Deploying	the	API	and	the	Lambda	Function,	Updating



the	Function,	Creating	the	GraphQL	API,	Creating	the	React	App	and
Adding	Amplify

put	method,	API	Gateway	Event,	Adding	the	API,	Admin	Component

Q

queries	(reads),	AWS	AppSync

query	operation,	Building	an	Offline	and	Real-Time	App	with	Amplify
DataStore

queryStringParameters	property,	Updating	the	Function

R

re-render,	Completing	Form.js,	Updating	the	Profile	Component

React	application

creating,	Creating	the	React	Application	and	Installing	the
Dependencies,	Building	the	React	Application-Summary,	Creating
the	React	App	and	Adding	Amplify

rendering	data	in,	Calling	the	API	and	Rendering	the	Data	in	React

uploading	images	from,	Uploading	Images	from	the	React
Application

React	Color,	Creating	the	Base	Project

React	Context,	Full	Stack	Development	in	the	Era	of	Serverless
Computing

React	Native,	Amazon	Cognito	Integration	with	AWS	Amplify

React	Router,	Amazon	Cognito	Integration	with	AWS	Amplify

reading	data,	Amplify	DataStore	Operations

real-time	data,	Real-Time	Data	(GraphQL	Subscriptions)



real-time	functionality,	testing,	Testing	the	Real-Time	Functionality

reducers,	creating,	Listing	Notes	(GraphQL	Query)

remove	command,	Deleting	the	Resources

render	method,	Performance

renderForm	function,	renderForm	Function

rendering	data	in	React,	Calling	the	API	and	Rendering	the	Data	in	React

renderItems	function,	Deleting	Notes	(GraphQL	Mutation)

repository	(repo),	Hosting:	Deploying	Your	Application	to	the	Amplify
Console	with	CI	and	CD

resources,	deleting,	Deleting	the	Resources

REST	(Representational	State	Transfer),	Amplify	client

risk,	Experimentation

ROI	(return	on	investment),	Experimentation

Route,	Router	Component

Router	component,	Nav	Component,	Router	Component,	Router
Component,	Router

Router.js	file,	Creating	the	File	and	Folder	Structure,	Creating	the
Frontend

S

save	operation,	Building	an	Offline	and	Real-Time	App	with	Amplify
DataStore

saving	data,	Amplify	DataStore	Operations

scalability,	as	a	benefit	of	serverless	architecture,	Scalability

schema,	What	Makes	Up	a	GraphQL	API?



SDK	(software	development	kit),	Amplify	client

SDL	(Schema	Definition	Language),	What	Makes	Up	a	GraphQL	API?

security	tokens,	Amplify	client

security,	as	a	benefit	of	serverless	architecture,	Security	and	stability

serverless

about,	Modern	Serverless	Philosophy

applications,	Characteristics	of	a	Serverless	Application

implementations	of,	Different	Implementations	of	Serverless

Serverless	Framework,	Serverless	Framework,	Walking	Through	the	Code

serverless	functions

about,	Serverless	Functions	In-Depth:	Part	1,	Serverless	Functions	In-
Depth:	Part	2

(see	also	Ecommerce)

adding	API,	Adding	the	API-Adding	the	API

adding	authentication,	Adding	Authentication	and	Group	Privileges

adding	DynamoDB	NoSQL	database,	Adding	the	Database

adding	group	privileges,	Adding	Authentication	and	Group	Privileges

adding	post-confirmation	Lambda	trigger,	Adding	a	Post-
Confirmation	Lambda	Trigger-Adding	a	Post-Confirmation	Lambda
Trigger

creating,	Creating	and	Deploying	a	Serverless	Function-Creating	the
/coins	Route

creating	base	projects,	Creating	the	Base	Project

creating	frontend,	Creating	the	Frontend-Main	Component



data	structure,	Event	Sources	and	Data	Structure-Amazon	Cognito
Event

deploying,	Creating	and	Deploying	a	Serverless	Function-Creating
the	/coins	Route

dynamic	image	resizing	with	AWS	Lambda	and	Amazon	S3,
Dynamic	Image	Resizing	with	AWS	Lambda	and	Amazon	S3-
Uploading	Images	from	the	React	Application

event	sources,	Event	Sources	and	Data	Structure-Amazon	Cognito
Event

IAM	(Identity	and	Access	Management)	permissions,	IAM
Permissions	and	Trigger	Configuration

testing	apps,	Testing	It	Out

trigger	configuration,	IAM	Permissions	and	Trigger	Configuration

serverless.yml	file,	Serverless	Framework

services

creating,	Creating	and	Deploying	Your	First	Service

deploying,	Creating	and	Deploying	Your	First	Service,	Deploying	the
Services

setRoute	function,	Router	Component

setUser	function,	Completing	Form.js

sign	out,	Profile	Component

SignIn	component,	SignIn	Component

signIn	function,	Amazon	Cognito	Integration	with	AWS	Amplify,	SignIn
Component,	Completing	Form.js

signOut	method,	Amazon	Cognito	Integration	with	AWS	Amplify

SignUp	component,	SignUp	Component



signUp	function,	Amazon	Cognito	Integration	with	AWS	Amplify,
SignUp	Component,	Completing	Form.js

smart	abstractions,	Modern	Serverless	Philosophy

sort	key,	Adding	the	Database

split	testing,	Experimentation

src	directory,	Creating	the	File	and	Folder	Structure

stability,	as	a	benefit	of	serverless	architecture,	Security	and	stability

Stage	type,	Relationships	Between	GraphQL	Types

start	command,	Listing	Notes	(GraphQL	Query),	Testing	the	App,	Testing
the	App

stateless	compute	containers,	Creating	and	Deploying	a	Serverless
Function

status	command,	Deploying	the	API	and	the	Lambda	Function

storage,	Amplify	CLI

(see	also	Amazon	S3)

styling	UI	components,	Styling	the	UI	Components

subscriptions	(real-time	data),	AWS	AppSync

Switch,	Router	Component

T

testing

applications,	Testing	the	App,	Testing	the	App,	Testing	It	Out

offline	functionality,	Testing	the	Offline	Functionality

real-time	functionality,	Testing	the	Real-Time	Functionality

toolchain,	Amplify	Framework



TOTP	(time-based	on	time	passwords),	Introduction	to	Authentication

trigger	configuration,	IAM	Permissions	and	Trigger	Configuration

U

UI	components,	styling,	Styling	the	UI	Components

under-fetching,	What	Is	GraphQL?

unique	identifier,	Creating	Notes	(GraphQL	Mutation),	Introduction	to
Authentication,	Adding	the	Database,	Creating	the	Base	Project

unique	primary	key,	Adding	the	Database

updateForm	helper	function,	updateForm	Helper	Function

updateFormType	function,	Creating	the	Form

updateNote	function,	Updating	Notes	(GraphQL	Mutation)

updateUser	function,	checkUser	Function

updating

client	app,	Updating	the	Client	App

data,	Amplify	DataStore	Operations

function,	Updating	the	Function

function	to	call	API,	Updating	the	Function	to	Call	Another	API

notes,	Updating	Notes	(GraphQL	Mutation)

Profile	component,	Updating	the	Profile	Component

uploading	images	from	React	application,	Uploading	Images	from	the
React	Application

useEffect	hook,	Listing	Notes	(GraphQL	Query),	Real-Time	Data
(GraphQL	Subscriptions),	Summary,	Protected	Component,	Router
Component,	Creating	the	protectedRoute	Hook,	Nav	Component,	Router



Component,	Performance,	About	this	component

user	identity	management,	Introduction	to	Amazon	Cognito

user	pools,	How	Amazon	Cognito	Works

user	state,	Introduction	to	Authentication

useReducer	component,	useReducer

useReducer	hook,	Listing	Notes	(GraphQL	Query),	Summary

users,	signing	out,	Profile	Component

useState	hook,	updateForm	Helper	Function,	Performance

UUID	(universally	unique	identifier),	Creating	the	GraphQL	API,	Creating
Notes	(GraphQL	Mutation),	Adding	the	API,	Creating	the	Base	Project

V

Vercel,	Other	options

viewing	GraphQL	API,	Viewing	and	Interacting	with	the	GraphQL	API

Vue,	Hosting:	Deploying	Your	Application	to	the	Amplify	Console	with
CI	and	CD

W

Web	Components,	Styling	the	UI	Components

WebSocket,	Amplify	client

withAuthenticator	component,	Summary,	Creating	the	Form,	Completing
Form.js,	Profile	Component

writing	client-side	code,	Writing	the	Client-Side	Code,	Writing	the	Client-
Side	Code

Y



YAML,	The	AWS	Serverless	Application	Model



About	the	Author

Nader	Dabit	is	a	web	and	mobile	developer	who	specializes	in	building
cross-platform	and	cloud-enabled	applications.	At	Amazon	Web	Services,
he	works	with	the	client	teams	to	help	develop	features	and	improve
developer	experience	for	client-side	SDKs.	Prior	to	working	with	AWS,
Nader	trained	companies	like	Microsoft,	Amazon,	Salesforce,	and
American	Express	on	how	to	build	applications	using	the	React	and	React
Native	frameworks	through	his	company,	React	Native	Training.



Colophon

The	animal	on	the	cover	of	Full	Stack	Serverless	is	a	blue	tang
(Paracanthurus	hepatus).	These	fish	are	found	across	a	large	area	of	the
Indian	and	Pacific	oceans.	Blue	tang	have	many	other	common	names,
such	as	doctorfish,	palette	surgeonfish,	flagtail	surgeonfish,	and	hippo
tang.

Adult	blue	tangs	have	oval-shaped	bodies	and	vivid	blue	coloring,	with
darker	blue	stripes	running	along	the	dorsal	area	from	eye	to	tail.	They
also	have	bright	yellow	pectoral	and	caudal	fins.	Juveniles	are	yellow	with
blue	spots	around	their	eyes.	Blue	tangs	average	8	to	12	inches	long	as
adults,	and	weigh	just	over	1	pound.	Their	lifespan	in	the	wild	is	8	to	12
years.

Blue	tangs	live	on	coral	reefs	or	in	rocky	areas	where	there	is	a	large
amount	of	algae,	the	main	item	in	their	diet.	They	provide	a	valuable
service	to	the	reef	ecosystem	by	removing	excess	algae	and	preventing	the
coral	from	suffocating.	Their	sharp	teeth	and	the	small	shape	of	their
mouth	allows	them	to	feed	from	uneven	surfaces.

Blue	tangs	usually	live	in	schools	made	up	of	various	species	of	fish,
which	provides	protection	and	helps	secure	food	sources.	They	are	known
for	playing	dead	when	they	encounter	predators.	In	addition,	the	blue	tang
has	sharp	spines	along	the	top	and	bottom	of	its	body	and	an	extensible
envenomed	spine	in	its	tail	fin	that	can	produce	deep,	painful	wounds	in
predators	such	as	tuna	and	grouper.	Males	also	use	these	spines	in	“sword
fights”	to	establish	dominance.

This	species	is	popular	in	aquariums—in	part	because	the	popular



character	Dory	from	the	Pixar/Disney	films	Finding	Nemo	(2003)	and
Finding	Dory	(2016)	is	a	blue	tang.	Many	of	the	animals	on	O’Reilly
covers	are	endangered;	all	of	them	are	important	to	the	world.

The	color	cover	illustration	is	by	Susan	Thompson,	based	on	a	black-and-
white	image	found	in	Natural	History:	Fishes	(1849)	by	Philip	Henry
Gosse.	The	cover	fonts	are	Gilroy	Semibold	and	Guardian	Sans.	The	text
font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad	Condensed;
and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.


	Preface
	Why I Wrote This Book
	Who This Book Is For
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Full Stack Development in the Era of Serverless Computing
	Modern Serverless Philosophy
	Characteristics of a Serverless Application
	Benefits of a Serverless Architecture
	Different Implementations of Serverless

	Introduction to AWS
	About AWS
	Full Stack Serverless on AWS
	Amplify CLI

	Introduction to the AWS Amplify CLI
	Installing and Configuring the Amplify CLI
	Initializing Your First Amplify Project
	Creating and Deploying Your First Service
	Deleting the Resources

	Summary

	2. Getting Started with AWS Amplify
	Creating and Deploying a Serverless Function
	Creating the React Application and Installing the Dependencies
	Creating a New Serverless Function with the Amplify CLI
	Walking Through the Code
	Creating the /coins Route

	Adding the API
	Creating a New API
	Deploying the API and the Lambda Function

	Interacting with the New API
	Configuring the Client App to Work with Amplify
	The Amplify Client API Category
	Calling the API and Rendering the Data in React

	Updating the Function to Call Another API
	Installing Axios
	Updating the Function
	Updating the Client App

	Summary

	3. Creating Your First App
	Introduction to GraphQL
	What Is GraphQL?
	What Makes Up a GraphQL API?
	GraphQL Operations

	Creating the GraphQL API
	Viewing and Interacting with the GraphQL API
	Building the React Application
	Listing Notes (GraphQL Query)
	Creating Notes (GraphQL Mutation)
	Deleting Notes (GraphQL Mutation)
	Updating Notes (GraphQL Mutation)
	Real-Time Data (GraphQL Subscriptions)

	Summary

	4. Introduction to Authentication
	Introduction to Amazon Cognito
	How Amazon Cognito Works
	Amazon Cognito Integration with AWS Amplify

	Creating the React App and Adding Amplify
	Client Authentication Overview

	Building the App
	Creating the File and Folder Structure
	Creating the First Component
	Public Component
	Nav Component
	Protected Component
	Router Component
	Profile Component
	Styling the UI Components
	Configuring the App
	Testing the App

	Summary

	5. Custom Authentication Strategies
	Creating the protectedRoute Hook
	Creating the Form
	SignIn Component
	SignUp Component
	ConfirmSignUp Component
	ForgotPassword Component
	ForgotPasswordSubmit Component
	Completing Form.js
	updateForm Helper Function
	renderForm Function
	Form Type Toggles
	Updating the Profile Component
	Testing the App

	Summary

	6. Serverless Functions In-Depth: Part 1
	Event Sources and Data Structure
	API Gateway Event
	Amazon S3 Event
	Amazon Cognito Event

	IAM Permissions and Trigger Configuration
	Creating the Base Project
	Adding a Post-Confirmation Lambda Trigger
	Dynamic Image Resizing with AWS Lambda and Amazon S3
	Adding the Custom Logic for Resizing the Image
	Uploading Images from the React Application

	Summary

	7. Serverless Functions In-Depth: Part 2
	What We’ll Build
	Getting Started
	Adding Authentication and Group Privileges
	Adding the Database
	Adding the API
	Creating the Frontend
	Container Component
	checkUser Function
	Nav Component
	Profile Component
	Router Component
	Admin Component
	Main Component

	Testing It Out
	Summary

	8. AWS AppSync In-Depth
	Building Skills for GraphQL, AppSync API, and React Router
	Relationships Between GraphQL Types
	Multiple Authentication Types
	Authorization
	Custom Data Access Patterns Using GSIs

	Starting to Build the App
	Creating the Amplify App and Adding the Features
	Building the Backend
	Authentication
	The AppSync API

	Deploying the Services
	Building the Frontend
	Container
	Footer
	Nav
	Admin
	Router
	Performance
	Home

	Summary

	9. Building Offline Apps with Amplify DataStore
	About Amplify DataStore
	Amplify DataStore Overview
	Amplify DataStore Operations
	DataStore Predicates

	Building an Offline and Real-Time App with Amplify DataStore
	Creating the Base Project
	Creating the API
	Writing the Client-Side Code
	Testing the Offline Functionality
	Testing the Real-Time Functionality

	Summary

	10. Working with Images and Storage
	Using Amazon S3
	Creating the Base Project
	Adding Authentication
	Creating the API
	Writing the Client-Side Code

	Summary

	11. Hosting: Deploying Your Application to the Amplify Console with CI and CD
	CLI-Based Deployments
	Git-Based Deployments
	Creating the GitHub Repository
	Git-Based CI/CD

	Access Control
	Custom Domains
	Summary

	Index

